TY - JOUR
T1 - hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing
AU - Lee, Chung-Fan
AU - Ou, Derick S C
AU - Lee, Sung-Bau
AU - Chang, Liang-Hao
AU - Lin, Ruo Kai
AU - Li, Ying-Shiuan
AU - Upadhyay, Anup K.
AU - Cheng, Xiaodong
AU - Wang, Yi-Ching
AU - Hsu, Han-Shui
AU - Hsiao, Michael
AU - Wu, Cheng-Wen
AU - Juan, Li-Jung
PY - 2010/8/2
Y1 - 2010/8/2
N2 - Hypermethylation-mediated tumor suppressor gene silencing plays a crucial role in tumorigenesis. Understanding its underlying mechanism is essential for cancer treatment. Previous studies on human N-α-acetyltransferase 10, NatA catalytic subunit (hNaa10p; also known as human arrest-defective 1 [hARD1]), have generated conflicting results with regard to its role in tumorigenesis. Here we provide multiple lines of evidence indicating that it is oncogenic. We have shown that hNaa10p overexpression correlated with poor survival of human lung cancer patients. In vitro, enforced expression of hNaa10p was sufficient to cause cellular transformation, and siRNA-mediated depletion of hNaa10p impaired cancer cell proliferation in colony assays and xenograft studies. The oncogenic potential of hNaa10p depended on its interaction with DNA methyltransferase 1 (DNMT1). Mechanistically, hNaa10p positively regulated DNMT1 enzymatic activity by facilitating its binding to DNA in vitro and its recruitment to promoters of tumor suppressor genes, such as E-cadherin, in vivo. Consistent with this, interaction between hNaa10p and DNMT1 was required for E-cadherin silencing through promoter CpG methylation, and E-cadherin repression contributed to the oncogenic effects of hNaa10p. Together, our data not only establish hNaa10p as an oncoprotein, but also reveal that it contributes to oncogenesis through modulation of DNMT1 function.
AB - Hypermethylation-mediated tumor suppressor gene silencing plays a crucial role in tumorigenesis. Understanding its underlying mechanism is essential for cancer treatment. Previous studies on human N-α-acetyltransferase 10, NatA catalytic subunit (hNaa10p; also known as human arrest-defective 1 [hARD1]), have generated conflicting results with regard to its role in tumorigenesis. Here we provide multiple lines of evidence indicating that it is oncogenic. We have shown that hNaa10p overexpression correlated with poor survival of human lung cancer patients. In vitro, enforced expression of hNaa10p was sufficient to cause cellular transformation, and siRNA-mediated depletion of hNaa10p impaired cancer cell proliferation in colony assays and xenograft studies. The oncogenic potential of hNaa10p depended on its interaction with DNA methyltransferase 1 (DNMT1). Mechanistically, hNaa10p positively regulated DNMT1 enzymatic activity by facilitating its binding to DNA in vitro and its recruitment to promoters of tumor suppressor genes, such as E-cadherin, in vivo. Consistent with this, interaction between hNaa10p and DNMT1 was required for E-cadherin silencing through promoter CpG methylation, and E-cadherin repression contributed to the oncogenic effects of hNaa10p. Together, our data not only establish hNaa10p as an oncoprotein, but also reveal that it contributes to oncogenesis through modulation of DNMT1 function.
UR - http://www.scopus.com/inward/record.url?scp=77955300851&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955300851&partnerID=8YFLogxK
U2 - 10.1172/JCI42275
DO - 10.1172/JCI42275
M3 - Article
C2 - 20592467
AN - SCOPUS:77955300851
SN - 0021-9738
VL - 120
SP - 2920
EP - 2930
JO - Journal of Clinical Investigation
JF - Journal of Clinical Investigation
IS - 8
ER -