TY - JOUR
T1 - Helicobacter pylori infection activates Src homology-2 domain-containing phosphatase 2 to suppress IFN-γ signaling
AU - Wang, Yu-Chih
AU - Chen, Chia-Ling
AU - Sheu, Bor-Shyang
AU - Yang, Yao-Jong
AU - Tseng, Po-Chun
AU - Hsieh, Chia-Yuan
AU - Lin, Chiou Feng
N1 - Publisher Copyright:
Copyright © 2014 by The American Association of Immunologists, Inc.
PY - 2014/10/15
Y1 - 2014/10/15
N2 - Helicobacter pylori infection not only induces gastric inflammation but also increases the risk of gastric tumorigenesis. IFN-γ has antimicrobial effects; however, H. pylori infection elevates IFN-γ-mediated gastric inflammation and may suppress IFN-γ signaling as a strategy to avoid immune destruction through an as-yet-unknown mechanism. This study was aimed at investigating the mechanism of H. pylori-induced IFN-γ resistance. Postinfection of viable H. pylori decreased IFN-γ-activated signal transducers and activators of transcription 1 and IFN regulatory factor 1 not only in human gastric epithelial MKN45 and AZ-521 but also in human monocytic U937 cells. H. pylori caused an increase in the C-terminal tyrosine phosphorylation of Src homology-2 domain-containing phosphatase (SHP) 2. Pharmacologically and genetically inhibiting SHP2 reversed H. pylori-induced IFN-γ resistance. In contrast to a clinically isolated H. pylori strain HP238, the cytotoxin-associated gene A (CagA) isogenic mutant strain HP238CagAm failed to induce IFN-γ resistance, indicating that CagA regulates this effect. Notably, HP238 and HP238CagAm differently caused SHP2 phosphorylation; however, imaging and biochemical analyses demonstrated CagA-mediated membrane- associated binding with phosphorylated SHP2. CagA-independent generation of reactive oxygen species (ROS) contributed to H. pylori-induced SHP2 phosphorylation; however, ROS/SHP2 mediated IFN-γ resistance in a CagA-regulated manner. This finding not only provides an alternative mechanism for how CagA and ROS coregulate SHP2 activation but may also explain their roles in H. pylori-induced IFN-γ resistance.
AB - Helicobacter pylori infection not only induces gastric inflammation but also increases the risk of gastric tumorigenesis. IFN-γ has antimicrobial effects; however, H. pylori infection elevates IFN-γ-mediated gastric inflammation and may suppress IFN-γ signaling as a strategy to avoid immune destruction through an as-yet-unknown mechanism. This study was aimed at investigating the mechanism of H. pylori-induced IFN-γ resistance. Postinfection of viable H. pylori decreased IFN-γ-activated signal transducers and activators of transcription 1 and IFN regulatory factor 1 not only in human gastric epithelial MKN45 and AZ-521 but also in human monocytic U937 cells. H. pylori caused an increase in the C-terminal tyrosine phosphorylation of Src homology-2 domain-containing phosphatase (SHP) 2. Pharmacologically and genetically inhibiting SHP2 reversed H. pylori-induced IFN-γ resistance. In contrast to a clinically isolated H. pylori strain HP238, the cytotoxin-associated gene A (CagA) isogenic mutant strain HP238CagAm failed to induce IFN-γ resistance, indicating that CagA regulates this effect. Notably, HP238 and HP238CagAm differently caused SHP2 phosphorylation; however, imaging and biochemical analyses demonstrated CagA-mediated membrane- associated binding with phosphorylated SHP2. CagA-independent generation of reactive oxygen species (ROS) contributed to H. pylori-induced SHP2 phosphorylation; however, ROS/SHP2 mediated IFN-γ resistance in a CagA-regulated manner. This finding not only provides an alternative mechanism for how CagA and ROS coregulate SHP2 activation but may also explain their roles in H. pylori-induced IFN-γ resistance.
UR - http://www.scopus.com/inward/record.url?scp=84907525430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907525430&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1400594
DO - 10.4049/jimmunol.1400594
M3 - Article
C2 - 25225672
AN - SCOPUS:84907525430
SN - 0022-1767
VL - 193
SP - 4149
EP - 4158
JO - Journal of Immunology
JF - Journal of Immunology
IS - 8
ER -