Growth and characterization of superconducting β-FeSe type iron chalcogenide nanowires

H. H. Chang, C. C. Chang, Y. Y. Chiang, Yue Jyun Luo, Meng Ping Wu, C. M. Tseng, Y. C. Lee, Y. R. Wu, Y. T. Hsieh, Min Hsueh Wen, J. M. Wang, M. K. Wu

研究成果: 雜誌貢獻文章同行評審

12 引文 斯高帕斯(Scopus)


We have grown highly crystalline β-FeSe type iron chalcogenide nanowires (NWs) by annealing thin film that is prepared by a pulsed laser deposition method. Three kinds of NWs with compositions of Fe 0.8Se, Fe0.88Se0.32Te0.68 and Fe0.88Te0.91S0.09 have been prepared and carefully characterized by a high-resolution transmission electron microscope (HRTEM). The NWs reveal ideal tetragonal structure with crystal growth along the [100] direction. Energy dispersive spectroscopy (EDS) studies and HRTEM images show the NWs to have good compositional uniformity, except for the existence of a thin layer of oxide on the surface. No superconducting transition was observed in the FeSex NWs, which is possibly caused by Fe deficiency. The other two types of NWs show relatively higher and sharper superconducting transitions than their bulk counterparts. Interestingly, a resistive transition tail is observed in the NWs with diameter smaller than 100 nm, which might originate from a phase slip process in the quasi-one-dimensional system. The success in producing these high quality NWs provides a new avenue for better understanding the origin of superconductivity in β-FeSe type iron chalcogenides.
期刊Superconductor Science and Technology
出版狀態已發佈 - 2014

ASJC Scopus subject areas

  • 電氣與電子工程
  • 凝聚態物理學
  • 陶瓷和複合材料
  • 材料化學
  • 金屬和合金


深入研究「Growth and characterization of superconducting β-FeSe type iron chalcogenide nanowires」主題。共同形成了獨特的指紋。