摘要
In this paper, a high-precision tantalum nitride thin film resistor was fabricated using a novel plasma ion etching method. Sheet resistance and x-ray spectra confirmed that the composition and crystalline lattice of the tantalum nitride film varied upon different nitrogen flow ratios of sputtering. To obtain a good performance, we proposed a novel two-step etching process for the fabrication of tantalum nitride thin film resistor, that is, firstly etched using a Cl2 plasma for the purpose of sharp profile and fast etching rate, and followed by a Cl2/O2 gas mixture plasma to get a better etching selectivity. The temperature coefficient of resistance of the tantalum nitride thin film resistor showed that the temperature-related disturbance increased upon increasing the nitrogen composition of device. The temperature-related stability of the thin film resistor was further improved by post-deposited ammonia plasma treatment. The flicker noise, measured at frequency from 1 to 100k Hz, also showed that the current noise depended on the nitrogen composition of the thin film resistor. The characteristic of radio frequency dependent resistance, which was measured ranging from 1 to 20 GHz and extracted by two-ported S parameter and telegrapher's transmission line model, also showed that the stability of tantalum nitride thin film resistor decreased upon increasing the nitrogen composition.
原文 | 英語 |
---|---|
頁(從 - 到) | 6517-6526 |
頁數 | 10 |
期刊 | International Journal of Electrochemical Science |
卷 | 10 |
發行號 | 8 |
出版狀態 | 已發佈 - 2015 |
ASJC Scopus subject areas
- 電化學