Finite element analysis of cervical spine with different constrained types of total disc replacement

Chien Yu Lin, Shih Youeng Chuang, Chang-Jung Chiang, Yang-Hwei Tsuang, Weng Pin Chen

研究成果: 雜誌貢獻文章同行評審

6 引文 斯高帕斯(Scopus)

摘要

Various designs of cervical total disc replacement (CTDR) have been introduced and employed in an attempt to avoid disadvantages of the fusion surgery. The purposes of this study were to evaluate the effects of the range of motion (ROM), the instantaneous center of rotation (ICR) and the facet joint force (FJF) with different constrained types of CTDR devices. A three-dimensional finite element (FE) model of intact cervical spine (C3-7) was made from CT scans of a normal person and validated. Postoperative FE models simulating CTDR implantation at the C5-6 disc space were made for CTDR-I (constrained design) and CTDR-II (nonconstrained design), respectively. Hybrid protocol (intact: 1 Nm) with a compressive follower load of 73.6 N was applied at the superior endplate of the C3 vertebral body. The inferior endplate of C7 vertebral body was constrained in all directions. At the index level, CTDR-I showed a higher increase in segmental motion and FJF than CTDR-II in extension, lateral bending and axial rotation. The CTDR-II with an elastomer-type core reproduced a near physiological ICR of the intact model in extension and axial rotation. Abnormal kinetic and kinematic changes related to the CTDR may induce surgical level problems and cause long-term failure of spinal surgery.
原文英語
文章編號1450038
期刊Journal of Mechanics in Medicine and Biology
14
發行號3
DOIs
出版狀態已發佈 - 6月 2014

ASJC Scopus subject areas

  • 生物醫學工程

指紋

深入研究「Finite element analysis of cervical spine with different constrained types of total disc replacement」主題。共同形成了獨特的指紋。

引用此