摘要
In this study, we developed a method to fabricate large, perfusable, macroporous, cell-laden hydrogels. This method is suitable for efficient cell seeding, and can maintain sufficient oxygen delivery and mass transfer. We first loaded three types of testing cells (including NIH 3T3, ADSC and Huh7) into gelatin hydrogel filaments, then cross-linked the cell-laden gelatin hydrogel filaments using microbial transglutaminase (mTGase). In situ cross-linking by mTGase was found to be non-cytotoxic and prevented the scattering of the cells after delivery. The gelatin hydrogel constructs kept the carried cells viable; also, the porosity and permeability were adequate for a perfusion system. Cell proliferation was better under perfusion culture than under static culture. When human umbilical vein endothelial cells were seeded into the constructs, we demonstrated that they stably formed an even coverage on the surface of the hydrogel filaments, serving as a preliminary microvasculature network. We concluded that this method provides a viable solution for cell seeding, oxygen delivery, and mass transfer in large three-dimensional (3-D) tissue engineering. Furthermore, it has the potential for being a workhorse in studies involving 3-D cell cultures and tissue engineering.
原文 | 英語 |
---|---|
頁(從 - 到) | 912-920 |
頁數 | 9 |
期刊 | Acta Biomaterialia |
卷 | 10 |
發行號 | 2 |
DOIs | |
出版狀態 | 已發佈 - 2月 2014 |
ASJC Scopus subject areas
- 生物技術
- 生物材料
- 生物化學
- 生物醫學工程
- 分子生物學