摘要
Owing to its capacity to eliminate a long-standing methodological limitation, fiber photometry can assist research gaining novel insight into neural systems. Fiber photometry can reveal artifact-free neural activity under deep brain stimulation (DBS). Although evoking neural potential with DBS is an effective method for mediating neural activity and neural function, the relationship between DBS-evoked neural Ca2+ change and DBS-evoked neural electrophysiology remains unknown. Therefore, in this study, a self-assembled optrode was demonstrated as a DBS stimulator and an optical biosensor capable of concurrently recording Ca2+ fluorescence and electrophysiological signals. Before the in vivo experiment, the volume of tissue activated (VTA) was estimated, and the simulated Ca2+ signals were presented using Monte Carlo (MC) simulation to approach the realistic in vivo environment. When VTA and the simulated Ca2+ signals were combined, the distribution of simulated Ca2+ fluorescence signals matched the VTA region. In addition, the in vivo experiment revealed a correlation between the local field potential (LFP) and the Ca2+ fluorescence signal in the evoked region, revealing the relationship between electrophysiology and the performance of neural Ca2+ concentration behavior. Concurrent with the VTA volume, simulated Ca2+ intensity, and the in vivo experiment, these data suggested that the behavior of neural electrophysiology was consistent with the phenomenon of Ca2+ influx to neurons.
原文 | 英語 |
---|---|
文章編號 | 265 |
期刊 | Biosensors |
卷 | 13 |
發行號 | 2 |
DOIs | |
出版狀態 | 已發佈 - 2月 2023 |
ASJC Scopus subject areas
- 分析化學
- 生物技術
- 生物醫學工程
- 儀器
- 工程(雜項)
- 臨床生物化學