摘要

Cancer has been a leading cause of death over the last few decades in western countries as well as in Taiwan. However, traditional therapies are limited by the adverse effects of chemotherapy and radiotherapy, and tumor recurrence may occur. Therefore, it is critical to develop novel therapeutic drugs. In the field of HDAC inhibitor development, apart from the hydroxamic acid moiety, 2-aminobenzamide also functions as a zinc-binding domain, which is shown in well-known HDAC inhibitors such as Entinostat and Chidamide. With recent successful experiences in synthesizing 1-(phenylsulfonyl)indole-based compounds, in this study, we further combined two features of the above chemical compounds and generated indolyl benzamides. Compounds were screened in different cancer cell lines, and enzyme activity was examined to demonstrate their potential for anti-HDAC activity. Various biological functional assays evidenced that two of these compounds could suppress cancer growth and migration capacity, through regulating epithelial–mesenchymal transition (EMT), cell cycle, and apoptosis mechanisms. Data from 3D cancer cells and the in vivo zebrafish model suggested the potential of these compounds in cancer therapy in the future. © 2024 Elsevier Ltd
原文英語
文章編號117792
期刊Bioorganic and Medicinal Chemistry
109
DOIs
出版狀態已發佈 - 7月 15 2024

ASJC Scopus subject areas

  • 生物化學
  • 分子醫學
  • 分子生物學
  • 藥學科學
  • 藥物發現
  • 臨床生物化學
  • 有機化學

指紋

深入研究「Enhancing anti-cancer capacity: Novel class I/II HDAC inhibitors modulate EMT, cell cycle, and apoptosis pathways」主題。共同形成了獨特的指紋。

引用此