摘要

Impaired wound healing is a significant complication of diabetes. Platelet-derived extracellular vesicles (pEVs), rich in growth factors and cytokines, show promise as a powerful biotherapy to modulate cellular proliferation, angiogenesis, immunomodulation, and inflammation. For practical home-based wound therapy, however, pEVs should be incorporated into wound bandages with careful attention to delivery strategies. In this work, a gelatin-alginate hydrogel (GelAlg) loaded with reduced graphene oxide (rGO) was fabricated, and its potential as a diabetic wound dressing was investigated. The GelAlg@rGO-pEV gel exhibited excellent mechanical stability and biocompatibility in vitro, with promising macrophage polarization and reactive oxygen species (ROS)-scavenging capability. In vitro cell migration experiments were complemented by in vivo investigations using a streptozotocin-induced diabetic rat wound model. When exposed to near-infrared light at 2 W cm− 2, the GelAlg@rGO-pEV hydrogel effectively decreased the expression of inflammatory biomarkers, regulated immune response, promoted angiogenesis, and enhanced diabetic wound healing. Interestingly, the GelAlg@rGO-pEV hydrogel also increased the expression of heat shock proteins involved in cellular protective pathways. These findings suggest that the engineered GelAlg@rGO-pEV hydrogel has the potential to serve as a wound dressing that can modulate immune responses, inflammation, angiogenesis, and follicle regeneration in diabetic wounds, potentially leading to accelerated healing of chronic wounds.
原文英語
文章編號318
期刊Journal of Nanobiotechnology
21
發行號1
DOIs
出版狀態已發佈 - 12月 2023

ASJC Scopus subject areas

  • 生物工程
  • 醫藥(雜項)
  • 分子醫學
  • 生物醫學工程
  • 應用微生物與生物技術
  • 藥學科學

指紋

深入研究「Enhanced diabetic wound healing using platelet-derived extracellular vesicles and reduced graphene oxide in polymer-coordinated hydrogels」主題。共同形成了獨特的指紋。

引用此