TY - JOUR
T1 - Effects of silver nanoparticles on the interactions of neuron- and glia-like cells
T2 - Toxicity, uptake mechanisms, and lysosomal tracking
AU - Hsiao, I. Lun
AU - Hsieh, Yi Kong
AU - Chuang, Chun Yu
AU - Wang, Chu Fang
AU - Huang, Yuh Jeen
N1 - Publisher Copyright:
© 2017 Wiley Periodicals, Inc.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - Silver nanoparticles (AgNPs) are commonly used nanomaterials in consumer products. Previous studies focused on its effects on neurons; however, little is known about their effects and uptake mechanisms on glial cells under normal or activated states. Here, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were directly or indirectly exposed to 10 nm AgNPs using mono- and co-culture system. A lipopolysaccharide (LPS) was pretreated to activate glial cells before AgNP treatment for mimicking NP exposure under brain inflammation. From mono-culture, ALT took up the most AgNPs and had the lowest cell viability within three cells. Moreover, AgNPs induced H2O2 and NO from ALT/activated ALT and BV-2, respectively. However, AgNPs did not induce cytokines release (IL-6, TNF-α, MCP-1). LPS-activated BV-2 took up more AgNPs than normal BV-2, while the induction of ROS and cytokines from activated cells were diminished. Ca2+-regulated clathrin- and caveolae-independent endocytosis and phagocytosis were involved in the AgNP uptake in ALT, which caused more rapid NP translocation to lysosome than in macropinocytosis and clathrin-dependent endocytosis-involved BV-2. AgNPs directly caused apoptosis and necrosis in N2a cells, while by indirect NP exposure to bottom chamber ALT or BV-2 in Transwell, more apoptotic upper chamber N2a cells were observed. Cell viability of BV-2 also decreased in an ALT–BV-2 co-culturing study. The damaged cells correlated to NP-mediated H2O2 release from ALT or NO from BV-2, which indicates that toxic response of AgNPs to neurons is not direct, but indirectly arises from AgNP-induced soluble factors from other glial cells.
AB - Silver nanoparticles (AgNPs) are commonly used nanomaterials in consumer products. Previous studies focused on its effects on neurons; however, little is known about their effects and uptake mechanisms on glial cells under normal or activated states. Here, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were directly or indirectly exposed to 10 nm AgNPs using mono- and co-culture system. A lipopolysaccharide (LPS) was pretreated to activate glial cells before AgNP treatment for mimicking NP exposure under brain inflammation. From mono-culture, ALT took up the most AgNPs and had the lowest cell viability within three cells. Moreover, AgNPs induced H2O2 and NO from ALT/activated ALT and BV-2, respectively. However, AgNPs did not induce cytokines release (IL-6, TNF-α, MCP-1). LPS-activated BV-2 took up more AgNPs than normal BV-2, while the induction of ROS and cytokines from activated cells were diminished. Ca2+-regulated clathrin- and caveolae-independent endocytosis and phagocytosis were involved in the AgNP uptake in ALT, which caused more rapid NP translocation to lysosome than in macropinocytosis and clathrin-dependent endocytosis-involved BV-2. AgNPs directly caused apoptosis and necrosis in N2a cells, while by indirect NP exposure to bottom chamber ALT or BV-2 in Transwell, more apoptotic upper chamber N2a cells were observed. Cell viability of BV-2 also decreased in an ALT–BV-2 co-culturing study. The damaged cells correlated to NP-mediated H2O2 release from ALT or NO from BV-2, which indicates that toxic response of AgNPs to neurons is not direct, but indirectly arises from AgNP-induced soluble factors from other glial cells.
KW - central nervous system
KW - coculture
KW - cytokines
KW - reactive oxygen and nitrogen species
KW - silver nanoparticles
KW - uptake mechanisms
UR - http://www.scopus.com/inward/record.url?scp=85013070338&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013070338&partnerID=8YFLogxK
U2 - 10.1002/tox.22397
DO - 10.1002/tox.22397
M3 - Article
C2 - 28181394
AN - SCOPUS:85013070338
SN - 1520-4081
VL - 32
SP - 1742
EP - 1753
JO - Environmental Toxicology
JF - Environmental Toxicology
IS - 6
ER -