TY - JOUR
T1 - Effects of melatonin on glucose homeostasis, antioxidant ability, and adipokine secretion in ICR mice with NA/STZ-induced hyperglycemia
AU - Lo, Chung Cheng
AU - Lin, Shyh Hsiang
AU - Chang, Jung Su
AU - Chien, Yi Wen
N1 - Publisher Copyright:
© 2017 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2017/11
Y1 - 2017/11
N2 - Diabetes is often associated with decreased melatonin level. The aim was to investigate the effects of different dosage of melatonin on glucose hemostasis, antioxidant ability and adipokines secretion in diabetic institute for cancer research (ICR) mice. Forty animals were randomly divided into five groups including control (C), diabetic (D), low-dosage (L), medium-dosage (M), and high-dosage (H) groups. Groups L, M, and H, respectively, received oral melatonin at 10, 20, and 50 mg/kg of BW (body weight) daily after inducing hyperglycemia by nicotinamide (NA)/ streptozotocin (STZ). After the six-week intervention, results showed that melatonin administration increased insulin level and performed lower area under the curve (AUC) in H group (p < 0.05). Melatonin could lower hepatic Malondialdehyde (MDA) level in all melatonin-treated groups and increase superoxide dismutase activity in H group (p < 0.05). Melatonin-treated groups revealed significant higher adiponectin in L group, and lower leptin/adiponectin ratio and leptin in M and H groups (p > 0.05). Melatonin could lower cholesterol and triglyceride in liver and decrease plasma cholesterol and low-density lipoprotein-cholesterol (LDL-C) in L group, and increase plasma high-density lipoprotein-cholesterol (HDL-C) in H group (p < 0.05). Above all, melatonin could decrease oxidative stress, increase the adiponectin level and improve dyslipidemia, especially in H group. These data support melatonin possibly being a helpful aid for treating hyperglycemia-related symptoms.
AB - Diabetes is often associated with decreased melatonin level. The aim was to investigate the effects of different dosage of melatonin on glucose hemostasis, antioxidant ability and adipokines secretion in diabetic institute for cancer research (ICR) mice. Forty animals were randomly divided into five groups including control (C), diabetic (D), low-dosage (L), medium-dosage (M), and high-dosage (H) groups. Groups L, M, and H, respectively, received oral melatonin at 10, 20, and 50 mg/kg of BW (body weight) daily after inducing hyperglycemia by nicotinamide (NA)/ streptozotocin (STZ). After the six-week intervention, results showed that melatonin administration increased insulin level and performed lower area under the curve (AUC) in H group (p < 0.05). Melatonin could lower hepatic Malondialdehyde (MDA) level in all melatonin-treated groups and increase superoxide dismutase activity in H group (p < 0.05). Melatonin-treated groups revealed significant higher adiponectin in L group, and lower leptin/adiponectin ratio and leptin in M and H groups (p > 0.05). Melatonin could lower cholesterol and triglyceride in liver and decrease plasma cholesterol and low-density lipoprotein-cholesterol (LDL-C) in L group, and increase plasma high-density lipoprotein-cholesterol (HDL-C) in H group (p < 0.05). Above all, melatonin could decrease oxidative stress, increase the adiponectin level and improve dyslipidemia, especially in H group. These data support melatonin possibly being a helpful aid for treating hyperglycemia-related symptoms.
KW - Adiopkines
KW - Diabetes
KW - Melatonin
KW - Oxidative stress and insulin resistance
UR - http://www.scopus.com/inward/record.url?scp=85032722872&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032722872&partnerID=8YFLogxK
U2 - 10.3390/nu9111187
DO - 10.3390/nu9111187
M3 - Article
AN - SCOPUS:85032722872
SN - 2072-6643
VL - 9
JO - Nutrients
JF - Nutrients
IS - 11
M1 - 1187
ER -