Effect of macrophage migration inhibitory factor on pulmonary vein arrhythmogenesis through late sodium current

Chye Gen Chin, Yao Chang Chen, Yung Kuo Lin, Yen Yu Lu, Wan Li Cheng, Cheng Chih Chung, Shih Ann Chen, Yi Jen Chen

研究成果: 雜誌貢獻文章同行評審

5 引文 斯高帕斯(Scopus)

摘要

Aims: Macrophage migration inhibitory factor (MIF), a pleiotropic inflammatory cytokine, is highly expressed in patients with atrial fibrillation (AF). Inflammation increases the risk of AF and is primarily triggered by pulmonary vein (PV) arrhythmogenesis. This study investigated whether MIF can modulate the electrical activity of the PV and examined the underlying mechanisms of MIF. Methods and results: A conventional microelectrode, a whole-cell patch clamp, western blotting, and immunofluorescent confocal microscopy were used to investigate electrical activity, calcium (Ca2+) regulation, protein expression, ionic currents, and cytosolic reactive oxygen species (ROS) in rabbit PV tissue and isolated single cardiomyocytes with and without MIF incubation (100 ng/mL, treated for 6 h). The MIF (100 ng/mL)-treated PV tissue (n = 8) demonstrated a faster beating rate (1.8 ± 0.2 vs. 2.6 ± 0.1 Hz, P < 0.05), higher incidence of triggered activity (12.5 vs. 100%, P < 0.05), and premature atrial beat (0 vs. 100%, P < 0.05) than the control PV tissue (n = 8). Compared with the control PV cardiomyocytes, MIF-treated single PV cardiomyocytes had larger Ca2+ transients (0.6 ± 0.1 vs. 1.0 ± 0.1, ΔF/F0, P < 0.05), sarcoplasmic reticulum Ca2+ content (0.9 ± 0.20 vs. 1.7 ± 0.3 mM of cytosol, P < 0.05), and cytosolic ROS (146.8 ± 5.3 vs. 163.7 ± 3.8, ΔF/F0, P < 0.05). Moreover, MIF-treated PV cardiomyocytes exhibited larger late sodium currents (INa-Late), L-type Ca2+ currents, and Na+/Ca2+ exchanger currents than the control PV cardiomyocytes. KN93 [a selective calcium/calmodulin-dependent protein kinase II (CaMKII) blocker, 1 μM], ranolazine (an INa-Late inhibitor, 10 μM), and N-(mercaptopropionyl) glycine (ROS inhibitor, 10 mM) reduced the beating rates and the incidence of triggered activity and premature captures in the MIF-treated PV tissue. Conclusion: Macrophage migration inhibitory factor increased PV arrhythmogenesis through Na+ and Ca2+ dysregulation through the ROS activation of CaMKII signalling, which may contribute to the genesis of AF during inflammation. Anti-CaMKII treatment may reverse PV arrhythmogenesis. Our results clearly reveal a key link between MIF and AF and offer a viable therapeutic target for AF treatment.
原文英語
頁(從 - 到)698-706
頁數9
期刊Europace
25
發行號2
DOIs
出版狀態已發佈 - 2月 2023

ASJC Scopus subject areas

  • 心臟病學與心血管醫學
  • 生理學(醫學)

指紋

深入研究「Effect of macrophage migration inhibitory factor on pulmonary vein arrhythmogenesis through late sodium current」主題。共同形成了獨特的指紋。

引用此