Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery

Hao Yuan Chen, Yin Cheng Huang, Tu Hsueh Yeh, Chia Wei Chang, Yang Jin Shen, Yi Chieh Chen, Mu Qun Sun, Yi Chuan Cheng

研究成果: 雜誌貢獻文章同行評審

摘要

Traumatic injury to the spinal cord can lead to significant, permanent disability. Mammalian spinal cords are not capable of regeneration; in contrast, adult zebrafish are capable of such regeneration, fully recovering motor function. Understanding the mechanisms underlying zebrafish neuroregeneration may provide useful information regarding endogenous regenerative potential and aid in the development of therapeutic strategies in humans. DELTEX proteins (DTXs) regulate a variety of cellular processes. However, their role in neural regeneration has not been described. We found that zebrafish dtx2, encoding Deltex E3 ubiquitin ligase 2, is expressed in ependymo-radial glial cells in the adult spinal cord. After spinal cord injury, the heterozygous dtx2 mutant fish motor function recovered quicker than that of the wild-type controls. The mutant fish displayed increased ependymo-radial glial cell proliferation and augmented motor neuron formation. Moreover, her gene expression, downstream of Notch signaling, increased in Dtx2 mutants. Notch signaling inactivation by dominant-negative Rbpj abolished the increased ependymo-radial glia proliferation caused by Dtx2 deficiency. These results indicate that ependymo-radial glial proliferation is induced by Dtx2 deficiency by activating Notch-Rbpj signaling to improve spinal cord regeneration and motor function recovery.
原文英語
頁(從 - 到)540-550
頁數11
期刊Stem Cells and Development
33
發行號19-20
DOIs
出版狀態打印前電子出版 - 8月 9 2024

ASJC Scopus subject areas

  • 血液學
  • 發展生物學
  • 細胞生物學

指紋

深入研究「Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery」主題。共同形成了獨特的指紋。

引用此