摘要

Insomnia disorder (ID) and obstructive sleep apnea (OSA) with respiratory arousal threshold (ArTH) phenotypes often coexist in patients, presenting similar symptoms. However, the typical diagnosis examinations (in-laboratory polysomnography (lab-PSG) and other alternatives methods may therefore have limited differentiation capacities. Hence, this study established novel models to assist in the classification of ID and low-and high-ArTH OSA. Participants reporting insomnia as their chief complaint were enrolled. Their sleep parameters and body profile were accessed from the lab-PSG database. Based on the definition of low-ArTH OSA and ID, patients were divided into three groups, namely, the ID, low-and high-ArTH OSA groups. Various machine learning approaches, including logistic regression, k-nearest neighbors, naive Bayes, random forest (RF), and support vector machine, were trained using two types of features (Oximetry model, trained with oximetry parameters only; Combined model, trained with oximetry and anthropometric parameters). In the training stage, RF presented the highest cross-validation accuracy in both models compared with the other approaches. In the testing stage, the RF accuracy was 77.53% and 80.06% for the oximetry and combined models, respectively. The established models can be used to differentiate ID, low-and high-ArTH OSA in the population of Taiwan and those with similar craniofacial features.
原文英語
文章編號50
期刊Diagnostics
12
發行號1
DOIs
出版狀態已發佈 - 1月 2022

ASJC Scopus subject areas

  • 臨床生物化學

指紋

深入研究「Differentiation model for insomnia disorder and the respiratory arousal threshold phenotype in obstructive sleep apnea in the taiwanese population based on oximetry and anthropometric features」主題。共同形成了獨特的指紋。

引用此