TY - JOUR
T1 - Development of an artificial intelligence–based automated recommendation system for clinical laboratory tests
T2 - Retrospective analysis of the national health insurance database
AU - Islam, Mohaimenul
AU - Yang, Hsuan Chia
AU - Poly, Tahmina Nasrin
AU - Jack Li, Yu Chuan
N1 - Funding Information:
This research is funded in part by the Ministry of Education (MOE) under grant MOE 109-6604-001-400 and DP2-109-21121-01-A-01 and the Ministry of Science and Technology (MOST) under grant MOST 109-2823-8-038-004. We thank our colleagues who edited our manuscript.
Publisher Copyright:
©Md Mohaimenul Islam, Hsuan-Chia Yang, Tahmina Nasrin Poly, Yu-Chuan Jack Li.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/11
Y1 - 2020/11
N2 - Background: Laboratory tests are considered an essential part of patient safety as patients’ screening, diagnosis, and follow-up are solely based on laboratory tests. Diagnosis of patients could be wrong, missed, or delayed if laboratory tests are performed erroneously. However, recognizing the value of correct laboratory test ordering remains underestimated by policymakers and clinicians. Nowadays, artificial intelligence methods such as machine learning and deep learning (DL) have been extensively used as powerful tools for pattern recognition in large data sets. Therefore, developing an automated laboratory test recommendation tool using available data from electronic health records (EHRs) could support current clinical practice. Objective: The objective of this study was to develop an artificial intelligence–based automated model that can provide laboratory tests recommendation based on simple variables available in EHRs. Methods: A retrospective analysis of the National Health Insurance database between January 1, 2013, and December 31, 2013, was performed. We reviewed the record of all patients who visited the cardiology department at least once and were prescribed laboratory tests. The data set was split into training and testing sets (80:20) to develop the DL model. In the internal validation, 25% of data were randomly selected from the training set to evaluate the performance of this model. Results: We used the area under the receiver operating characteristic curve, precision, recall, and hamming loss as comparative measures. A total of 129,938 prescriptions were used in our model. The DL-based automated recommendation system for laboratory tests achieved a significantly higher area under the receiver operating characteristic curve (AUROCmacro and AUROCmicro of 0.76 and 0.87, respectively). Using a low cutoff, the model identified appropriate laboratory tests with 99% sensitivity. Conclusions: The developed artificial intelligence model based on DL exhibited good discriminative capability for predicting laboratory tests using routinely collected EHR data. Utilization of DL approaches can facilitate optimal laboratory test selection for patients, which may in turn improve patient safety. However, future study is recommended to assess the cost-effectiveness for implementing this model in real-world clinical settings.
AB - Background: Laboratory tests are considered an essential part of patient safety as patients’ screening, diagnosis, and follow-up are solely based on laboratory tests. Diagnosis of patients could be wrong, missed, or delayed if laboratory tests are performed erroneously. However, recognizing the value of correct laboratory test ordering remains underestimated by policymakers and clinicians. Nowadays, artificial intelligence methods such as machine learning and deep learning (DL) have been extensively used as powerful tools for pattern recognition in large data sets. Therefore, developing an automated laboratory test recommendation tool using available data from electronic health records (EHRs) could support current clinical practice. Objective: The objective of this study was to develop an artificial intelligence–based automated model that can provide laboratory tests recommendation based on simple variables available in EHRs. Methods: A retrospective analysis of the National Health Insurance database between January 1, 2013, and December 31, 2013, was performed. We reviewed the record of all patients who visited the cardiology department at least once and were prescribed laboratory tests. The data set was split into training and testing sets (80:20) to develop the DL model. In the internal validation, 25% of data were randomly selected from the training set to evaluate the performance of this model. Results: We used the area under the receiver operating characteristic curve, precision, recall, and hamming loss as comparative measures. A total of 129,938 prescriptions were used in our model. The DL-based automated recommendation system for laboratory tests achieved a significantly higher area under the receiver operating characteristic curve (AUROCmacro and AUROCmicro of 0.76 and 0.87, respectively). Using a low cutoff, the model identified appropriate laboratory tests with 99% sensitivity. Conclusions: The developed artificial intelligence model based on DL exhibited good discriminative capability for predicting laboratory tests using routinely collected EHR data. Utilization of DL approaches can facilitate optimal laboratory test selection for patients, which may in turn improve patient safety. However, future study is recommended to assess the cost-effectiveness for implementing this model in real-world clinical settings.
KW - Artificial intelligence
KW - Clinical decision-support system
KW - Deep learning
KW - Laboratory test
KW - Patient safety
UR - http://www.scopus.com/inward/record.url?scp=85097466229&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097466229&partnerID=8YFLogxK
U2 - 10.2196/24163
DO - 10.2196/24163
M3 - Article
AN - SCOPUS:85097466229
SN - 2291-9694
VL - 8
JO - JMIR medical informatics
JF - JMIR medical informatics
IS - 11
M1 - e24163
ER -