Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times

X. Liang, J.M. Whitham, E.K. Holwerda, X. Shao, L. Tian, Y.-W. Wu, V. Lombard, B. Henrissat, D.M. Klingeman, Z.K. Yang, M. Podar, T.L. Richard, J.G. Elkins, S.D. Brown, L.R. Lynd

研究成果: 雜誌貢獻文章同行評審

24 引文 斯高帕斯(Scopus)


Background: Anaerobic fermentation of lignocellulose occurs in both natural and managed environments, and is an essential part of the carbon cycle as well as a promising route to sustainable production of fuels and chemicals. Lignocellulose solubilization by mixed microbiomes is important in these contexts. Results: Here, we report the development of stable switchgrass-fermenting enrichment cultures maintained at various residence times and moderately high (55 °C) temperatures. Anaerobic microbiomes derived from a digester inoculum were incubated at 55 °C and fed semi-continuously with medium containing 30 g/L mid-season harvested switchgrass to achieve residence times (RT) of 20, 10, 5, and 3.3 days. Stable, time-invariant cellulolytic methanogenic cultures with minimal accumulation of organic acids were achieved for all RTs. Fractional carbohydrate solubilization was 0.711, 0.654, 0.581 and 0.538 at RT = 20, 10, 5 and 3.3 days, respectively, and glucan solubilization was proportional to xylan solubilization at all RTs. The rate of solubilization was described well by the equation r = k(C - C 0 f r), where C represents the concentration of unutilized carbohydrate, C 0 is the concentration of carbohydrate (cellulose and hemicellulose) entering the bioreactor and f r is the extrapolated fraction of entering carbohydrate that is recalcitrant at infinite residence time. The 3.3 day RT is among the shortest RT reported for stable thermophilic, methanogenic digestion of a lignocellulosic feedstock. 16S rDNA phylotyping and metagenomic analyses were conducted to characterize the effect of RT on community dynamics and to infer functional roles in the switchgrass to biogas conversion to the various microbial taxa. Firmicutes were the dominant phylum, increasing in relative abundance from 54 to 96% as RT decreased. A Clostridium clariflavum strain with genetic markers for xylose metabolism was the most abundant lignocellulose-solubilizing bacterium. A Thermotogae (Defluviitoga tunisiensis) was the most abundant bacterium in switchgrass digesters at RT = 20 days but decreased in abundance at lower RTs as did multiple Chloroflexi. Synergistetes and Euryarchaeota were present at roughly constant levels over the range of RTs examined. Conclusions: A system was developed in which stable methanogenic steady-states were readily obtained with a particulate biomass feedstock, mid-season switchgrass, at laboratory (1 L) scale. Characterization of the extent and rate of carbohydrate solubilization in combination with 16S rDNA and metagenomic sequencing provides a multi-dimensional view of performance, species composition, glycoside hydrolases, and metabolic function with varying residence time. These results provide a point of reference and guidance for future studies and organism development efforts involving defined cultures.
頁(從 - 到)243
期刊Biotechnology for Biofuels
出版狀態已發佈 - 9月 6 2018

ASJC Scopus subject areas

  • 生物技術
  • 應用微生物與生物技術
  • 可再生能源、永續發展與環境
  • 能源(全部)
  • 管理、監督、政策法律


深入研究「Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times」主題。共同形成了獨特的指紋。