Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy)

Alessia Perego, Mattia Sanna, Andrea Giussani, Marcello Ermido Chiodini, Mattia Fumagalli, Salvatore Roberto Pilu, Marco Bindi, Marco Moriondo, Marco Acutis

研究成果: 雜誌貢獻文章同行評審

20 引文 斯高帕斯(Scopus)

摘要

The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030-2060 and 2070-2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400kgNha-1), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor.The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245-565mmy-1). With respect to the current hybrid, the ideotype will require less irrigation water (-13%, p<0.01) and it resulted in significantly higher yield under water stress condition (+15%, p<0.01) and optimal water supply (+2%, p<0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400kgNha-1 will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration.

原文英語
頁(從 - 到)497-509
頁數13
期刊Science of the Total Environment
499
DOIs
出版狀態已發佈 - 11月 15 2014
對外發佈

ASJC Scopus subject areas

  • 環境工程
  • 環境化學
  • 廢物管理和處置
  • 污染

指紋

深入研究「Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy)」主題。共同形成了獨特的指紋。

引用此