TY - JOUR
T1 - Degradation of antibiotic amoxicillin using 1×1 molecular sieve-structured manganese oxide
AU - Kuan, Wen Hui
AU - Hu, Ching Yao
AU - Liu, Bin Sheng
AU - Tzou, Yu Min
N1 - Funding Information:
We thank the National Science Council of Taiwan, Republic of China, for providing financial support under grant number NSC 99-2221-E-131-013-MY3.
PY - 2013/8/1
Y1 - 2013/8/1
N2 - The kinetics and mechanism of amoxicillin (AMO) degradation using a 1×1 molecular sieve-structured manganese oxide (MnO2) was studied. The presence of the buffer solution (i.e., NaHCO3, NaH 2PO4 and KH2PO4) diminished AMO binding to MnO2, thus reducing AMO degradation in the pretest; therefore, all other experiments in this study were conducted without the addition of a buffer. Third-order rate constants, second-order on AMO and first-order on MnO2 increased with elevating pH level (2.81-7.23) from 0.54 to 9.17 M-2 s-1, and it decreased to 4.27 M -2 s-1 at pH 8.53 beyond the pka2 of AMO (7.3). The dissolution of the MnO2 suspension with and without AMO exhibited a similar trend; that is, Mn2+ concentration increased with decreasing pH. However, the dissolution of MnO2 with AMO was greater than that without AMO, except for the reaction occurring at pH 8.53, partially indicating that MnO2 acts as an oxidant in AMO degradation. The preliminary chromatogram data display different products with varying pH reaction s, implying that AMO elimination using this 1×1 molecular sieve-structured MnO2 is by adsorption as well as oxidative degradation. A complementary experiment indicates that the amount of oxidatively degraded AMO increases substantially from 65.5% at 4 h to 95% at 48 h, whereas the AMO adsorbed onto MnO2 decreases slightly from 4.5% at 4 h to 2.4% at 48 h. The oxidative degradation accounted for more AMO removal than adsorption over the whole reaction course, indicating that the oxidative reaction of AMO on MnO2 dominated the AMO removal.
AB - The kinetics and mechanism of amoxicillin (AMO) degradation using a 1×1 molecular sieve-structured manganese oxide (MnO2) was studied. The presence of the buffer solution (i.e., NaHCO3, NaH 2PO4 and KH2PO4) diminished AMO binding to MnO2, thus reducing AMO degradation in the pretest; therefore, all other experiments in this study were conducted without the addition of a buffer. Third-order rate constants, second-order on AMO and first-order on MnO2 increased with elevating pH level (2.81-7.23) from 0.54 to 9.17 M-2 s-1, and it decreased to 4.27 M -2 s-1 at pH 8.53 beyond the pka2 of AMO (7.3). The dissolution of the MnO2 suspension with and without AMO exhibited a similar trend; that is, Mn2+ concentration increased with decreasing pH. However, the dissolution of MnO2 with AMO was greater than that without AMO, except for the reaction occurring at pH 8.53, partially indicating that MnO2 acts as an oxidant in AMO degradation. The preliminary chromatogram data display different products with varying pH reaction s, implying that AMO elimination using this 1×1 molecular sieve-structured MnO2 is by adsorption as well as oxidative degradation. A complementary experiment indicates that the amount of oxidatively degraded AMO increases substantially from 65.5% at 4 h to 95% at 48 h, whereas the AMO adsorbed onto MnO2 decreases slightly from 4.5% at 4 h to 2.4% at 48 h. The oxidative degradation accounted for more AMO removal than adsorption over the whole reaction course, indicating that the oxidative reaction of AMO on MnO2 dominated the AMO removal.
KW - amoxicillin
KW - antibiotics
KW - kinetics
KW - manganese oxide
KW - oxidative degradation
UR - http://www.scopus.com/inward/record.url?scp=84886101443&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886101443&partnerID=8YFLogxK
U2 - 10.1080/09593330.2013.772658
DO - 10.1080/09593330.2013.772658
M3 - Article
C2 - 24350501
AN - SCOPUS:84886101443
SN - 0959-3330
VL - 34
SP - 2443
EP - 2451
JO - Environmental Technology (United Kingdom)
JF - Environmental Technology (United Kingdom)
IS - 16
ER -