Convergence of physical and chemical signaling in the modulation of vascular smooth muscle cell cycle and proliferation by fibrillar collagen-regulated P66Shc

Yi Ting Yeh, Chih I. Lee, Seh Hong Lim, Li Jing Chen, Wei Li Wang, Yung Jen Chuang, Jeng Jiann Chiu

研究成果: 雜誌貢獻文章同行評審

6 引文 斯高帕斯(Scopus)

摘要

Arterial smooth muscle cell (SMC) phenotype and proliferation is regulated by their surrounding collagens, which transform from fibrillar to monomeric type in atherogenesis, and platelet-derived growth factor (PDGF)-BB/interleukin (IL)-1β. This study aims at elucidating the mechanisms by which physical (monomeric vs. fibrillar collagens) and chemical (PDGF-BB/IL-1β vs. vehicle controls) stimuli modulate SMC cycle and proliferation. SMCs were cultured on monomeric vs. fibrillar type I collagens. In parallel experiments, SMCs on fibrillar collagen were co-stimulated with PDGF-BB/IL-1β. These physical and chemical factors induced common SMC cycle signaling events, including up-regulations of cyclin-dependent kinase-4/6 and cyclins A/D1, phosphorylation of retinoblastoma (Rb) and its dissociations with E2F2/3. The physical and chemical inductions of SMC cycle signaling and progression were oppositely regulated by phosphatidylinositol 3-kinase (PI3K)-mediated Akt and p38 mitogen-activated protein kinase (MAPK). Fibrillar collagen degraded p66Shc, whose Ser36-phosphorylation plays important roles in the modulation of SMC cycle. Monomeric collagen and PDGF-BB/IL-1β co-stimulation induced p66Shc expression and Ser36-phosphorylation through β1 integrin and PDGF receptor-β, respectively. In conclusion, our results demonstrate that fibrillar collagen-regulated p66Shc converges the physical and chemical stimuli to modulate SMC cycle and proliferation through PI3K-mediated Akt and p38 MAPK and their opposite regulation in downstream common cell cycle signaling cascades.

原文英語
頁(從 - 到)6728-6738
頁數11
期刊Biomaterials
33
發行號28
DOIs
出版狀態已發佈 - 10月 1 2012
對外發佈

ASJC Scopus subject areas

  • 生物工程
  • 陶瓷和複合材料
  • 生物物理學
  • 生物材料
  • 材料力學

指紋

深入研究「Convergence of physical and chemical signaling in the modulation of vascular smooth muscle cell cycle and proliferation by fibrillar collagen-regulated P66Shc」主題。共同形成了獨特的指紋。

引用此