TY - JOUR
T1 - Contribution of the Testosterone Androgen Receptor–PARD3B Signaling Axis to Tumorigenesis and Malignance of Glioblastoma Multiforme through Stimulating Cell Proliferation and Colony Formation
AU - Yang, Jr Di
AU - Chen, Jui Tai
AU - Liu, Shing Hwa
AU - Chen, Ruei Ming
N1 - Funding Information:
This research was funded by National Yang-Ming Chiao Tung University Hospital (RD2022-011), Shuang Ho Hospital (110FRP-05), Wan Fang Hospital (111-wf-swf-02), the Ministry of Sciences and Technology (MOST 111-2314-B-038-088-MY3), and TMU Research Center of Cancer Translational Medicine from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE), Taipei, Taiwan.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/8
Y1 - 2022/8
N2 - Background: Glioblastoma multiforme (GBM) is the most common and malignant brain tumor with very poor prognoses. After surgical resection of the primary tumor, rapid proliferation of residual glioblastoma cells is a critical cause explaining tumor malignance and recurrence. In this study, we evaluated de novo roles of the testosterone androgen receptor (AR)–PARD3B signaling axis in the tumorigenesis and malignance of human GBM and the possible related mechanisms. Methods: AR and PARD3B gene expressions and their correlations were mined from The Cancer Genome Atlas (TCGA) database and analyzed using the UALCAN system. Analyses using a real-time PCR, cell proliferation, and colony formation and a loss-of-function strategy by suppressing AR activity with its specific inhibitor, enzalutamide, were then carried out to determine roles of the testosterone AR–PARD3B signaling axis in tumor malignance. Results: Expressions of AR, PARD3B mRNA, and proteins in human GBM tissues were upregulated compared to normal human brain tissues. In contrast, levels of AR and PARD3B mRNA in most TCGA pan-cancer types were downregulated compared to their respective normal tissues. Interestingly, a highly positive correlation between AR and PARD3B gene expressions in human GBM was identified. The results of a bioinformatics search further showed that there were five AR-specific DNA-binding elements predicted in the 5′ promoter of the PARD3B gene. Regarding the mechanisms, exposure of human glioblastoma cells to testosterone induced AR and PARD3B gene expressions and successively stimulated cell proliferation and colony formation. Suppressing AR activity concurrently resulted in significant attenuations of testosterone-induced PARD3B gene expression, cell proliferation, and colony formation in human glioblastoma cells. Conclusions: This study showed the contribution of the testosterone AR–PARD3B signaling axis to the tumorigenesis and malignance of human GBM through stimulating cell proliferation and colony formation. Therefore, the AR-PARD3B signaling axis could be targeted for potential therapy for human GBM.
AB - Background: Glioblastoma multiforme (GBM) is the most common and malignant brain tumor with very poor prognoses. After surgical resection of the primary tumor, rapid proliferation of residual glioblastoma cells is a critical cause explaining tumor malignance and recurrence. In this study, we evaluated de novo roles of the testosterone androgen receptor (AR)–PARD3B signaling axis in the tumorigenesis and malignance of human GBM and the possible related mechanisms. Methods: AR and PARD3B gene expressions and their correlations were mined from The Cancer Genome Atlas (TCGA) database and analyzed using the UALCAN system. Analyses using a real-time PCR, cell proliferation, and colony formation and a loss-of-function strategy by suppressing AR activity with its specific inhibitor, enzalutamide, were then carried out to determine roles of the testosterone AR–PARD3B signaling axis in tumor malignance. Results: Expressions of AR, PARD3B mRNA, and proteins in human GBM tissues were upregulated compared to normal human brain tissues. In contrast, levels of AR and PARD3B mRNA in most TCGA pan-cancer types were downregulated compared to their respective normal tissues. Interestingly, a highly positive correlation between AR and PARD3B gene expressions in human GBM was identified. The results of a bioinformatics search further showed that there were five AR-specific DNA-binding elements predicted in the 5′ promoter of the PARD3B gene. Regarding the mechanisms, exposure of human glioblastoma cells to testosterone induced AR and PARD3B gene expressions and successively stimulated cell proliferation and colony formation. Suppressing AR activity concurrently resulted in significant attenuations of testosterone-induced PARD3B gene expression, cell proliferation, and colony formation in human glioblastoma cells. Conclusions: This study showed the contribution of the testosterone AR–PARD3B signaling axis to the tumorigenesis and malignance of human GBM through stimulating cell proliferation and colony formation. Therefore, the AR-PARD3B signaling axis could be targeted for potential therapy for human GBM.
KW - cell proliferation
KW - colony formation
KW - glioblastoma multiforme
KW - PARD3B
KW - testosterone androgen receptor signaling
UR - http://www.scopus.com/inward/record.url?scp=85137353553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137353553&partnerID=8YFLogxK
U2 - 10.3390/jcm11164818
DO - 10.3390/jcm11164818
M3 - Article
AN - SCOPUS:85137353553
SN - 2077-0383
VL - 11
JO - Journal of Clinical Medicine
JF - Journal of Clinical Medicine
IS - 16
M1 - 4818
ER -