Context-dependent Features Fusion with BERT for Evaluating Multi-Turn Customer-Helpdesk Dialogues

Siu Hin Ng, Yen Chun Huang, Sheng Jie Lin, Yung Chun Chang

研究成果: 書貢獻/報告類型會議貢獻

摘要

With the growth of online text data in recent years, the research on automated dialogue systems has made more progress than before. In this paper, we propose a new model DepBERT. This model uses BERT pre-training model and integrates Syntactic Dependency Feature to extract the key features of customer and helpdesk data in the dialogue content to enhance the prediction of evaluating multiple turns of dialogue. The contribution of this research is to optimize the method of automated evaluation dialogue system. The F1-score of DepBERT has a 4% increase in customer dataset and has a 10% increase in helpdesk dataset compared to BERT, indicating that it can effectively predict the task behavior in the dialogue between the customer and the helpdesk.

原文英語
主出版物標題Proceedings - 2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021
發行者Association for Computing Machinery (ACM)
頁面512-517
頁數6
ISBN(電子)9781450391153
DOIs
出版狀態已發佈 - 12月 14 2021
事件2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021 - Virtual, Online, 澳大利亞
持續時間: 12月 14 202112月 17 2021

出版系列

名字ACM International Conference Proceeding Series

會議

會議2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021
國家/地區澳大利亞
城市Virtual, Online
期間12/14/2112/17/21

ASJC Scopus subject areas

  • 人機介面
  • 電腦網路與通信
  • 電腦視覺和模式識別
  • 軟體

指紋

深入研究「Context-dependent Features Fusion with BERT for Evaluating Multi-Turn Customer-Helpdesk Dialogues」主題。共同形成了獨特的指紋。

引用此