Comparison of 2,3,5,4′-tetrahydroxystilbene-2-O-b-D-glucoside-induced proliferation and differentiation of dental pulp stem cells in 2D and 3D culture systems—gene analysis

Yen Wu, Yao Yu Chung, Yu Tang Chin, Chi Yu Lin, Po Jan Kuo, Ting Yi Chen, Tzu Yu Lin, Hsien Chung Chiu, Haw Ming Huang, Jiiang Huei Jeng, Sheng Yang Lee

研究成果: 雜誌貢獻文章同行評審

2 引文 斯高帕斯(Scopus)

摘要

Background/purpose: Culture environments play a critical role in stem cell expansion. This study aimed to evaluate the effects of 2,3,5,4′-tetrahydroxystilbene-2-O-b-D-glucoside (THSG) on the proliferation and differentiation of human dental pulp stem cells (DPSCs) in 2-dimensional (2D) and 3-dimensional (3D) culture systems. Materials and methods: Human DPSCs were seeded in T25 flasks for 2D cultivation. For the 3D culture system, DPSCs were mixed with microcarriers and cultured in spinner flasks. Cells in both culture systems were treated with THSG, and cell proliferation was determined using a cell counter and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. In THSG-treated DPSCs, the genes associated with proliferation, adipogenesis, neurogenesis, osteogenesis, pluripotency, oncogenesis, and apoptosis were analyzed using real-time polymerase chain reactions. Results: The spinner flask time-dependently improved cell numbers, cell viability, and expansion rates in THSG-treated DPSCs. In both the T25 and spinner flasks, the messenger RNA (mRNA) levels of proliferation, osteogenesis, and pluripotent-related genes had a significant maximum expression with 10 μM THSG treatment. However, 0.1 μM of THSG may be the most suitable condition for triggering neurogenesis and adipogenesis gene expression when DPSCs were cultured in spinner flasks. Furthermore, the number of oncogenes and apoptotic genes decreased considerably in the presence of THSG in both the T25 and spinner flasks. Conclusion: The spinner flask bioreactor combined with THSG may upregulate proliferation and lineage-specific differentiation in DPSCs. Thus, the combination can be used to mass-produce and cultivate human DPSCs for regenerative dentistry.
原文英語
頁(從 - 到)14-29
頁數16
期刊Journal of Dental Sciences
17
發行號1
DOIs
出版狀態已發佈 - 1月 2022

ASJC Scopus subject areas

  • 一般牙醫學

指紋

深入研究「Comparison of 2,3,5,4′-tetrahydroxystilbene-2-O-b-D-glucoside-induced proliferation and differentiation of dental pulp stem cells in 2D and 3D culture systems—gene analysis」主題。共同形成了獨特的指紋。

引用此