Combined effect of polymorphisms of MTHFR and MTR and arsenic methylation capacity on developmental delay in preschool children in Taiwan

Yu Mei Hsueh, Ying Chin Lin, Chi Jung Chung, Ya Li Huang, Ru Lan Hsieh, Pai Tsang Huang, Mei Yi Wu, Horng Sheng Shiue, Ssu Ning Chien, Chih Ying Lee, Ming I. Lin, Shu Chi Mu, Chien Tien Su

研究成果: 雜誌貢獻文章同行評審

4 引文 斯高帕斯(Scopus)

摘要

Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MTR) are related to cognitive dysfunction and mental disability. These genes, along with folate and vitamin B12 levels, are regulators of one-carbon metabolism, which synthesizes S-adenosylmethionine (SAM) as a methyl donor for arsenic methylation. The aim of this study was to explore whether polymorphisms of MTHFR and MTR influence arsenic methylation capacity and plasma folate and vitamin B12 levels and if these influences cause developmental delay in preschool children. A total of 178 children with developmental delay and 88 without developmental delay were recruited from August 2010 to March 2014. A high-performance liquid chromatography–hydride generator and atomic absorption spectrometer were used to determine urinary arsenic species. Plasma folate and vitamin B12 concentrations were measured by SimulTRAC-SNB radioassay. Polymorphisms of MTHFR C677T, MTHFR A1298C, and MTR A2756G were examined by polymerase chain reaction and restriction fragment length variation. The results show that MTHFR C677T C/T and T/T genotypes had a lower risk of developmental delay than the C/C genotype (odds ratio [OR] = 0.47; 95% confidence interval, 0.26–0.85). Subjects with the MTHFR C677T C/C genotype had significantly lower plasma folate and vitamin B12 levels than those with the MTHFR C677T C/T and T/T genotype. The MTHFR C677T C/C genotype combined with high total urinary arsenic and poor arsenic methylation capacity indices significantly increased the OR of developmental delay in a dose–response manner. This is the first study to show the combined effect of MTHFR C677T genotype and poor arsenic methylation capacity on developmental delay.

原文英語
頁(從 - 到)2027-2038
頁數12
期刊Archives of Toxicology
94
發行號6
DOIs
出版狀態已發佈 - 6月 1 2020

ASJC Scopus subject areas

  • 毒理學
  • 健康、毒理學和誘變

指紋

深入研究「Combined effect of polymorphisms of MTHFR and MTR and arsenic methylation capacity on developmental delay in preschool children in Taiwan」主題。共同形成了獨特的指紋。

引用此