TY - JOUR
T1 - Combination of Vismodegib and Paclitaxel Enhances Cytotoxicity via Bak-mediated Mitochondrial Damage in EGFR-Mutant Non-Small Cell Lung Cancer Cells
AU - Yeh, Wei Chen
AU - Tu, Yun Chieh
AU - Hsu, Pei Ling
AU - Lee, Chu Wan
AU - Yu, Hsin Hsien
AU - Su, Bor Chyuan
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
PY - 2024
Y1 - 2024
N2 - Half of NSCLC patients harbor epidermal growth factor receptor (EGFR) mutations, and their therapeutic responses are remarkably different from patients with wild-type EGFR (EGFR-WT) NSCLC. We previously demonstrated that the hedgehog inhibitor vismodegib (Vis) potentiates paclitaxel (PTX)-induced cytotoxicity via suppression of Bax phosphorylation, which promotes accumulation of mitochondrial damage and apoptosis in EGFR-WT NSCLC cells. In this study, we further delineated the anticancer activity and underlying mechanisms of this combination treatment in EGFR-mutant NSCLC cells. MTS/PMS activity and trypan blue exclusion assays were used to assess cell viability. Apoptosis was monitored by chromosome condensation, annexin V staining, and cleavage of PARP and caspase-3. Western blots were conducted to track proteins of interest after treatment. Reactive oxygen species (ROS) level was monitored by 2’,7’-dichlorodihydrofluorescein diacetate. Mitochondrial status was analyzed by tetramethylrhodamine, ethyl ester. Hedgehog signaling was induced by PTX, which rendered H1975 and PC9 cells insensitive to PTX-induced mitochondrial apoptosis via suppression of Bak. However, Vis enhanced PTX-induced Bak activation, leading to mitochondrial damage, ROS accumulation, and subsequent apoptosis. Our findings suggest that the combination of Vis and PTX could be a potential therapeutic strategy to increase PTX sensitivity of EGFR-mutant NSCLC.
AB - Half of NSCLC patients harbor epidermal growth factor receptor (EGFR) mutations, and their therapeutic responses are remarkably different from patients with wild-type EGFR (EGFR-WT) NSCLC. We previously demonstrated that the hedgehog inhibitor vismodegib (Vis) potentiates paclitaxel (PTX)-induced cytotoxicity via suppression of Bax phosphorylation, which promotes accumulation of mitochondrial damage and apoptosis in EGFR-WT NSCLC cells. In this study, we further delineated the anticancer activity and underlying mechanisms of this combination treatment in EGFR-mutant NSCLC cells. MTS/PMS activity and trypan blue exclusion assays were used to assess cell viability. Apoptosis was monitored by chromosome condensation, annexin V staining, and cleavage of PARP and caspase-3. Western blots were conducted to track proteins of interest after treatment. Reactive oxygen species (ROS) level was monitored by 2’,7’-dichlorodihydrofluorescein diacetate. Mitochondrial status was analyzed by tetramethylrhodamine, ethyl ester. Hedgehog signaling was induced by PTX, which rendered H1975 and PC9 cells insensitive to PTX-induced mitochondrial apoptosis via suppression of Bak. However, Vis enhanced PTX-induced Bak activation, leading to mitochondrial damage, ROS accumulation, and subsequent apoptosis. Our findings suggest that the combination of Vis and PTX could be a potential therapeutic strategy to increase PTX sensitivity of EGFR-mutant NSCLC.
KW - Bak
KW - EGFR mutation
KW - Hedgehog
KW - Lung cancer
KW - Paclitaxel
UR - http://www.scopus.com/inward/record.url?scp=85198985531&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85198985531&partnerID=8YFLogxK
U2 - 10.1007/s12013-024-01438-y
DO - 10.1007/s12013-024-01438-y
M3 - Article
AN - SCOPUS:85198985531
SN - 1085-9195
VL - 82
SP - 3499
EP - 3506
JO - Cell Biochemistry and Biophysics
JF - Cell Biochemistry and Biophysics
IS - 4
ER -