摘要
Biomarkers that predict disease progression might assist the development of better therapeutic strategies for aggressive cancers, such as ovarian cancer. Here, we investigated the role of collagen type XI alpha 1 (COL11A1) in cell invasiveness and tumor formation and the prognostic impact of COL11A1 expression in ovarian cancer. Microarray analysis suggested that COL11A1 is a disease progression-associated gene that is linked to ovarian cancer recurrence and poor survival. Small interference RNA-mediated specific reduction in COL11A1 protein levels suppressed the invasive ability and oncogenic potential of ovarian cancer cells and decreased tumor formation and lung colonization in mouse xenografts. A combination of experimental approaches, including real-time RT-PCR, casein zymography and chromatin immunoprecipitation (ChIP) assays, showed that COL11A1 knockdown attenuated MMP3 expression and suppressed binding of Ets-1 to its putative MMP3 promoter-binding site, suggesting that the Ets-1-MMP3 axis is upregulated by COL11A1. Transforming growth factor (TGF)-beta (TGF-β1) treatment triggers the activation of smad2 signaling cascades, leading to activation of COL11A1 and MMP3. Pharmacological inhibition of MMP3 abrogated the TGF-β1-triggered, COL11A1-dependent cell invasiveness. Furthermore, the NF-YA-binding site on the COL11A1 promoter was identified as the major determinant of TGF-β1-dependent COL11A1 activation. Analysis of 88 ovarian cancer patients indicated that high COL11A1 mRNA levels are associated with advanced disease stage. The 5-year recurrence-free and overall survival rates were significantly lower (P=0.006 and P=0.018, respectively) among patients with high expression levels of tissue COL11A1 mRNA compared with those with low expression. We conclude that COL11A1 may promote tumor aggressiveness via the TGF-β1-MMP3 axis and that COL11A1 expression can predict clinical outcome in ovarian cancer patients.
原文 | 英語 |
---|---|
頁(從 - 到) | 3432-3440 |
頁數 | 9 |
期刊 | Oncogene |
卷 | 33 |
發行號 | 26 |
DOIs | |
出版狀態 | 已發佈 - 6月 26 2014 |
ASJC Scopus subject areas
- 分子生物學
- 遺傳學
- 癌症研究