Carbon Monoxide-Releasing Molecule-2 Ameliorates Particulate Matter-Induced Aorta Inflammation via Toll-Like Receptor/NADPH Oxidase/ROS/NF- κ B/IL-6 Inhibition

Thi Thuy Tien Vo, Chien Yi Hsu, Yinshen Wee, Yuh Lien Chen, Hsin Chung Cheng, Ching Zong Wu, Wei Ning Lin, I. Ta Lee

研究成果: 雜誌貢獻文章同行評審

8 引文 斯高帕斯(Scopus)

摘要

Particulate matter (PM), a major air pollutant, may be associated with adverse cardiovascular effects. Reactive oxygen species- (ROS-) dependent proinflammatory cytokine production, such as interleukin-6 (IL-6), is a possible underlying mechanism. Carbon monoxide- (CO-) releasing molecule-2 (CORM-2) which liberates exogenous CO can exert many beneficial effects, particularly anti-inflammation and antioxidant effects. The purpose of this study was to explore the protective effects and underpinning mechanisms of CORM-2 on PM-induced aorta inflammation. Here, human aortic vascular smooth muscle cells (HASMCs) were utilized as in vitro models for the assessment of signaling pathways behind CORM-2 activities against PM-induced inflammatory responses, including Toll-like receptors (TLRs), NADPH oxidase, ROS, nuclear factor-kappa B (NF-κB), and IL-6. The modulation of monocyte adherence and HASMC migration, that are two critical cellular events of inflammatory process, along with their regulators, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) and MMP-9, in response to PM by CORM-2, were further evaluated. Finally, mice experiments under different conditions were conducted for the in vivo evaluation of CORM-2 benefits on the expression of inflammatory molecules including IL-6, ICAM-1, VCAM-1, MMP-2, and MMP-9. Our results found that PM could induce aorta inflammation in vitro and in vivo, as evidenced by the increase of IL-6 expression that was regulated by the TLR2 and TLR4/NADPH oxidase/ROS/NF-κB signaling pathway, thereby promoting ICAM-1- and VCAM-1-dependent monocyte adhesion and MMP-2- and MMP-9-dependent HASMC migration. Importantly, our experimental models demonstrated that CORM-2-liberated CO effectively inhibited the whole identified PM-induced inflammatory cascade in HASMCs and tissues. In conclusion, CORM-2 treatment may elicit multiple beneficial effects on inflammatory responses of aorta due to PM exposure, thereby providing therapeutic value in the context of inflammatory diseases of the cardiovascular system.
原文英語
文章編號2855042
期刊Oxidative Medicine and Cellular Longevity
2021
DOIs
出版狀態已發佈 - 2021

ASJC Scopus subject areas

  • 生物化學
  • 老化
  • 細胞生物學

指紋

深入研究「Carbon Monoxide-Releasing Molecule-2 Ameliorates Particulate Matter-Induced Aorta Inflammation via Toll-Like Receptor/NADPH Oxidase/ROS/NF- κ B/IL-6 Inhibition」主題。共同形成了獨特的指紋。

引用此