Biomechanical evaluation of a novel pedicle screw-based interspinous spacer: A finite element analysis

Hsin Chang Chen, Jia Lin Wu, Shou Chieh Huang, Zheng Cheng Zhong, Shiu Ling Chiu, Yu Shu Lai, Cheng Kung Cheng

研究成果: 雜誌貢獻文章同行評審

10 引文 斯高帕斯(Scopus)

摘要

Interspinous spacers have been designed to provide a minimally invasive surgical technique for patients with lumbar spinal stenosis or foraminal stenosis. A novel pedicle screw-based interspinous spacer has been developed in this study, and the aim of this finite element experiment was to investigate the biomechanical differences between the pedicle screw-based interspinous spacer (M-rod system) and the typical interspinous spacer (Coflex-F™). A validated finite element model of an intact lumbar spine was used to analyze the insertions of the Coflex-F™, titanium alloy M-rod (M-Ti), and polyetheretherketone M-rod (M-PEEK), independently. The range of motion (ROM) between each vertebrae, stiffness of the implanted level, the peak stress at the intervertebral discs, and the contact forces on spinous process were analyzed. Of all three devices, the Coflex-F™ provided the largest restrictions in extension, flexion and lateral bending. For intervertebral disc, the peak stress at the implanted segment decreased by 81% in the Coflex-F™, 60.2% in the M-Ti and 46.7% in the M-PEEK when compared to the intact model. For the adjacent segments, while the Coflex-F™ caused considerable increases in the ROM and disc stress, the M-PEEK only had small changes.
原文英語
頁(從 - 到)27-32
頁數6
期刊Medical Engineering and Physics
46
DOIs
出版狀態已發佈 - 8月 2017

ASJC Scopus subject areas

  • 生物物理學
  • 生物醫學工程

指紋

深入研究「Biomechanical evaluation of a novel pedicle screw-based interspinous spacer: A finite element analysis」主題。共同形成了獨特的指紋。

引用此