摘要

Surface topography-induced lineage commitment of human bone marrow stem cells (hBMSCs) has been reported. However, this effect on hBMSC differentiation toward retinal pigment epithelium (RPE)-like cells has not been explored. Herein, a family of cell culture substrates called binary colloidal crystals (BCCs) was used to stimulate hBMSCs into RPE-like cells without induction factors. Two BCCs, named SiPS (silica (Si)/polystyrene (PS)) and SiPSC (Si/carboxylated PS), having similar surface topographies but different surface chemistry was used for cell culture. The result showed that cell proliferation was no difference between the two BCCs and tissue culture polystyrene (TCPS) control. However, the cell attachment, spreading area, and aspect ratio between surfaces were significantly changed. For example, cells displayed more elongated on SiPS (aspect ratio ~7.0) than those on SiPSC and TCPS (~2.0). The size of focal adhesions on SiPSC (~1.6 µm2) was smaller than that on the TCPS (~2.5 µm2). qPCR results showed that hBMSCs expressed higher RPE progenitor genes (i.e., MITF and PAX6) on day 15, and mature RPE genes (i.e., CRALBP and RPE65) on day 30 on SiPS than TCPS. On the other hand, the expression of optical vesicle or neuroretina genes (i.e., MITF and VSX2) was upregulated on day 15 on SiPSC compared to the TCPS. This study reveals that hBMSCs could be modulated into different cell subtypes depending on the BCC combinations. This study shows the potential of BCCs in controlling stem cell differentiation.
原文英語
文章編號112717
期刊Colloids and Surfaces B: Biointerfaces
218
DOIs
出版狀態已發佈 - 10月 2022

ASJC Scopus subject areas

  • 生物技術
  • 表面和介面
  • 物理與理論化學
  • 膠體和表面化學

指紋

深入研究「Binary colloidal crystals (BCCs) modulate the retina-related gene expression of hBMSCs – A preliminary study」主題。共同形成了獨特的指紋。

引用此