Beta-adrenoceptor pathway enhances mitochondrial function in human neural stem cells via rotary cell culture system

Ming Chang Chiang, Heng Lin, Yi Chuan Cheng, Chia Hui Yen, Rong Nan Huang, Kuan Hung Lin

研究成果: 雜誌貢獻文章同行評審

34 引文 斯高帕斯(Scopus)

摘要

The structure and function of the human nervous system are altered in space when compared with their state on earth. To investigate directly the influence of simulated microgravity conditions which may be beneficial for cultivation and proliferation of human neural stem cells (hNSCs), the rotary cell culture system (RCCS) developed at the National Aeronautics and Space Administration (NASA) was used. RCCS allows the creation of a unique microgravity environment of low shear force, high-mass transfer and enables three-dimensional (3D) cell culture of dissimilar cell types. The results show that simulated microgravity using an RCCS would induce β-adrenoceptor, upregulate cAMP formation and activate both PKA and CREB (cAMP response element binding protein) pathways. The expression of intracellular mitochondrial genes, including PGC1α (PPAR coactivator 1α), nuclear respiratory factors 1 and 2 (NRF1 and NRF2) and mitochondrial transcription factor A (Tfam), regulated by CREB, were all significantly increased at 72. h after the onset of microgravity. Accordingly and importantly, the ATP level and amount of mitochondrial mass were also increased. These results suggest that exposure to simulated microgravity using an RCCS would induce cellular proliferation in hNSCs via an increased mitochondrial function. In addition, the RCCS bioreactor would support hNSCs growth, which may have the potential for cell replacement therapy in neurological disorders.

原文英語
頁(從 - 到)130-136
頁數7
期刊Journal of Neuroscience Methods
207
發行號2
DOIs
出版狀態已發佈 - 6月 15 2012

ASJC Scopus subject areas

  • 一般神經科學

指紋

深入研究「Beta-adrenoceptor pathway enhances mitochondrial function in human neural stem cells via rotary cell culture system」主題。共同形成了獨特的指紋。

引用此