TY - JOUR
T1 - Associations of ambient air pollution with overnight changes in body composition and sleep-related parameters
AU - Tung, Nguyen Thanh
AU - Lee, Yueh Lun
AU - Lin, Shang Yang
AU - Wu, Chih Da
AU - Dung, Hoang Ba
AU - Thuy, Tran Phan Chung
AU - Kuan, Yi Chun
AU - Tsai, Cheng Yu
AU - Lo, Chen Chen
AU - Lo, Kang
AU - Ho, Kin Fai
AU - Liu, Wen Te
AU - Chuang, Hsiao Chi
N1 - Funding Information:
This study was funded by the Ministry of Science and Technology of Taiwan ( MOST 109-2314-B-038-093-MY3 ).
Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/10/15
Y1 - 2021/10/15
N2 - This study aims to investigate the association of air pollution with overnight change in 4body composition and sleep-related parameters. Body composition of 197 subjects in New Taipei city was measured before and after sleep by bioelectric impedance analysis. Air pollutant data were collected from Taiwan Environmental Protection Administration. Sleep parameters were examined by polysomnography. We observed fine particulate matter (PM2.5) decreased arterial oxygen saturation (SaO2) and increased apnea-hypopnea index (AHI); NO2 increased arousal, AHI, and decreased mean SaO2; and O3 inmcreased mean SaO2. We observed 0.99-μg/m3 increase in PM2.5 was associated with 18.8% increase in changes of right arm fat percentage (95% confidence interval (CI): 0.004, 0.375) and 0.011-kg increase in changes of right arm fat mass (95% CI: 0.000, 0.021). 2.45-ppb increase in NO2 was associated with 0.181-kg decrease in changes of muscle mass (95% CI: −0.147, −0.001), 0.192-kg decrease in changes of fat free mass (95% CI: −0.155, −0.001), 21.1% increase in changes of right leg fat percentage (95% CI: 0.012, 0.160), and 21.3% increase in changes of left leg fat percentage (95% CI: 0.006, 0.168). 1.56-ppb increase in O3 was associated with 29.3% decrease in changes of right leg fat percentage (95% CI: −0.363, −0.013), 0.058-kg increase in changes of right leg fat free mass (95% CI: 0.008, 0.066), and 0.059-kg increase in changes of right leg muscle mass (95% CI: 0.010, 0.066). We observed AHI was associated with overnight changes in fat percentage, total fat mass, muscle mass, bone mass, fat free mass, extracellular water, basal metabolic rate, leg fat percentage, leg fat mass, and trunk fat percentage (p < 0.05). In conclusion, exposure to air pollutants was associated with overnight body composition changes and sleep-related parameters. Nocturnal changes in total muscle mass and leg fat percentage likely contribute to the relationship between air pollution and obstructive sleep apnea.
AB - This study aims to investigate the association of air pollution with overnight change in 4body composition and sleep-related parameters. Body composition of 197 subjects in New Taipei city was measured before and after sleep by bioelectric impedance analysis. Air pollutant data were collected from Taiwan Environmental Protection Administration. Sleep parameters were examined by polysomnography. We observed fine particulate matter (PM2.5) decreased arterial oxygen saturation (SaO2) and increased apnea-hypopnea index (AHI); NO2 increased arousal, AHI, and decreased mean SaO2; and O3 inmcreased mean SaO2. We observed 0.99-μg/m3 increase in PM2.5 was associated with 18.8% increase in changes of right arm fat percentage (95% confidence interval (CI): 0.004, 0.375) and 0.011-kg increase in changes of right arm fat mass (95% CI: 0.000, 0.021). 2.45-ppb increase in NO2 was associated with 0.181-kg decrease in changes of muscle mass (95% CI: −0.147, −0.001), 0.192-kg decrease in changes of fat free mass (95% CI: −0.155, −0.001), 21.1% increase in changes of right leg fat percentage (95% CI: 0.012, 0.160), and 21.3% increase in changes of left leg fat percentage (95% CI: 0.006, 0.168). 1.56-ppb increase in O3 was associated with 29.3% decrease in changes of right leg fat percentage (95% CI: −0.363, −0.013), 0.058-kg increase in changes of right leg fat free mass (95% CI: 0.008, 0.066), and 0.059-kg increase in changes of right leg muscle mass (95% CI: 0.010, 0.066). We observed AHI was associated with overnight changes in fat percentage, total fat mass, muscle mass, bone mass, fat free mass, extracellular water, basal metabolic rate, leg fat percentage, leg fat mass, and trunk fat percentage (p < 0.05). In conclusion, exposure to air pollutants was associated with overnight body composition changes and sleep-related parameters. Nocturnal changes in total muscle mass and leg fat percentage likely contribute to the relationship between air pollution and obstructive sleep apnea.
KW - Fat distribution
KW - Nitrogen dioxide
KW - Ozone
KW - Particulate matter
KW - Upper airway
UR - http://www.scopus.com/inward/record.url?scp=85107660030&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107660030&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2021.148265
DO - 10.1016/j.scitotenv.2021.148265
M3 - Article
C2 - 34119796
AN - SCOPUS:85107660030
SN - 0048-9697
VL - 791
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 148265
ER -