摘要
Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are commonly used as the first-line treatment for advanced NSCLC; however, the efficacy of drug delivery remains unknown. Hence, we successfully developed erlotinib-conjugated iron oxide nanoparticles (FeDC-E NPs) as theranostic probe that can potentially provide a new avenue for monitoring drug delivering through noninvasive magnetic resonance imaging. MRI ΔR2* relaxivity measurements offer an opportunity to quantitatively evaluate the uptake of FeDC-E NPs at cellular and tumoral levels. Additionally, NF-κB reporter gene system provides NF-κB activation status monitoring to validate the therapeutic efficiency of FeDC-E NPs. FeDC-E NPs not only inhibit the tumor growth and NF-κB-modulated antiapoptotic mechanism but also trigger extrinsic and intrinsic apoptotic pathways. Taken together, dual functional FeDC-E NPs offer diagnostic and therapeutic benefits against lung cancers, indicating that our presented probe could be applied in clinical.
原文 | 英語 |
---|---|
頁(從 - 到) | 1019-1031 |
頁數 | 13 |
期刊 | Nanomedicine: Nanotechnology, Biology, and Medicine |
卷 | 14 |
發行號 | 3 |
DOIs | |
出版狀態 | 已發佈 - 4月 1 2018 |
ASJC Scopus subject areas
- 生物工程
- 醫藥(雜項)
- 分子醫學
- 生物醫學工程
- 一般材料科學
- 藥學科學