TY - JOUR
T1 - Assessing the international transferability of a machine learning model for detecting medication error in the general internal medicine clinic
T2 - Multicenter preliminary validation study
AU - Chin, Yen Po Harvey
AU - Song, Wenyu
AU - Lien, Chia En
AU - Yoon, Chang Ho
AU - Wang, Wei Chen
AU - Liu, Jennifer
AU - Nguyen, Phung Anh
AU - Feng, Yi Ting
AU - Zhou, Li
AU - Li, Yu Chuan Jack
AU - Bates, David Westfall
N1 - Funding Information:
The authors would like to thank Liqin Wang and Hsuan Chia (Edward) Yang for their administrative support during the drafting process. The research was funded, in part, by the Ministry of Education (MOE; grant numbers MOE 109-6604-001-400) and the Ministry of Science and Technology (MOST; grant number MOST 109-2622-E-8-038-002-CC1).
Funding Information:
YL and YC are cofounders of DermAI Co, which provides AI-based teledermatology service and AESOP Technology, which makes software to reduce medication error rates. DB consults for EarlySense, which makes patient safety monitoring systems. DB receives cash compensation from CDI (Negev), Ltd, which is a not-for-profit incubator for health IT startups. DB receives equity from ValeraHealth, which makes software to help patients with chronic diseases. DB receives equity from Clew, which makes software to support clinical decision-making in intensive care. DB receives equity from MDClone, which takes clinical data and produces deidentified versions of it. DB receives minor equity from AESOP, which makes software to reduce medication error rates. DB receives research funding from IBM Watson Health. Other authors have declared no potential conflict of interest.
Publisher Copyright:
© Yen Po Harvey Chin, Wenyu Song, Chia En Lien, Chang Ho Yoon, Wei-Chen Wang, Jennifer Liu, Phung Anh Nguyen, Yi Ting Feng, Li Zhou, Yu Chuan Jack Li, David Westfall Bates. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
PY - 2021/1
Y1 - 2021/1
N2 - Background: Although most current medication error prevention systems are rule-based, these systems may result in alert fatigue because of poor accuracy. Previously, we had developed a machine learning (ML) model based on Taiwan's local databases (TLD) to address this issue. However, the international transferability of this model is unclear. Objective: This study examines the international transferability of a machine learning model for detecting medication errors and whether the federated learning approach could further improve the accuracy of the model. Methods: The study cohort included 667,572 outpatient prescriptions from 2 large US academic medical centers. Our ML model was applied to build the original model (O model), the local model (L model), and the hybrid model (H model). The O model was built using the data of 1.34 billion outpatient prescriptions from TLD. A validation set with 8.98% (60,000/667,572) of the prescriptions was first randomly sampled, and the remaining 91.02% (607,572/667,572) of the prescriptions served as the local training set for the L model. With a federated learning approach, the H model used the association values with a higher frequency of co-occurrence among the O and L models. A testing set with 600 prescriptions was classified as substantiated and unsubstantiated by 2 independent physician reviewers and was then used to assess model performance. Results: The interrater agreement was significant in terms of classifying prescriptions as substantiated and unsubstantiated (κ=0.91; 95% CI 0.88 to 0.95). With thresholds ranging from 0.5 to 1.5, the alert accuracy ranged from 75%-78% for the O model, 76%-78% for the L model, and 79%-85% for the H model. Conclusions: Our ML model has good international transferability among US hospital data. Using the federated learning approach with local hospital data could further improve the accuracy of the model.
AB - Background: Although most current medication error prevention systems are rule-based, these systems may result in alert fatigue because of poor accuracy. Previously, we had developed a machine learning (ML) model based on Taiwan's local databases (TLD) to address this issue. However, the international transferability of this model is unclear. Objective: This study examines the international transferability of a machine learning model for detecting medication errors and whether the federated learning approach could further improve the accuracy of the model. Methods: The study cohort included 667,572 outpatient prescriptions from 2 large US academic medical centers. Our ML model was applied to build the original model (O model), the local model (L model), and the hybrid model (H model). The O model was built using the data of 1.34 billion outpatient prescriptions from TLD. A validation set with 8.98% (60,000/667,572) of the prescriptions was first randomly sampled, and the remaining 91.02% (607,572/667,572) of the prescriptions served as the local training set for the L model. With a federated learning approach, the H model used the association values with a higher frequency of co-occurrence among the O and L models. A testing set with 600 prescriptions was classified as substantiated and unsubstantiated by 2 independent physician reviewers and was then used to assess model performance. Results: The interrater agreement was significant in terms of classifying prescriptions as substantiated and unsubstantiated (κ=0.91; 95% CI 0.88 to 0.95). With thresholds ranging from 0.5 to 1.5, the alert accuracy ranged from 75%-78% for the O model, 76%-78% for the L model, and 79%-85% for the H model. Conclusions: Our ML model has good international transferability among US hospital data. Using the federated learning approach with local hospital data could further improve the accuracy of the model.
KW - Clinical decision support
KW - Electronic health records
KW - Machine learning
KW - Medication alert systems
KW - Patient safety
UR - http://www.scopus.com/inward/record.url?scp=85100237978&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100237978&partnerID=8YFLogxK
U2 - 10.2196/23454
DO - 10.2196/23454
M3 - Article
C2 - 33502331
AN - SCOPUS:85100237978
SN - 2291-9694
VL - 9
SP - e23454
JO - JMIR Medical Informatics
JF - JMIR Medical Informatics
IS - 1
M1 - e23454
ER -