TY - JOUR
T1 - ASPM promotes prostate cancer stemness and progression by augmenting Wnt−Dvl-3−β-catenin signaling
AU - Pai, Vincent C.
AU - Hsu, Chung Chi
AU - Chan, Tze Sian
AU - Liao, Wen Ying
AU - Chuu, Chih Pin
AU - Chen, Wei-Yan
AU - Li, Chi Rong
AU - Lin, Ching Yu
AU - Huang, Shu Pin
AU - Chen, Li Tzong
AU - Tsai, Kelvin K.
N1 - Funding Information:
Acknowledgements Supported in part by Ministry of Science and Technology grants MOST 104-2314-B-400-022, MOST 105-2314-B-400-018 (KKT), MOST 105-2314-B-400-003 (L-TC), Taipei Medical University grant DP2-107-21121-C-04 (KKT), Ministry of Health and Welfare grant MOHW107-TDU-B-212-114020 (KKT) and National Health Research Institutes intramural grant CA-106-PP-09 (KKT).
PY - 2019/2/21
Y1 - 2019/2/21
N2 -
Recurrent and hormone-refractory prostate cancer (PCA) exhibits aggressive behaviors while current therapeutic approaches show little effect of prolonging the survival of patients with PCA. Thus, a deeper understanding of the patho-molecular mechanisms underlying the disease progression in PCA is crucial to identify novel diagnostic and/or therapeutic targets to improve the outcome of patients. Recent evidence suggests that activation of Wnt signaling in cancer stem cells (CSCs) contributes to cancer progression in malignant tumors. Here, we report that a novel Wnt co-activator ASPM (abnormal spindle-like microcephaly associated) maintains the prostate CSC subpopulation by augmenting the Wnt-β-catenin signaling in PCA. ASPM expression is incrementally upregulated in primary and metastatic PCA, implicating its potential role in PCA progression. Consistently, downregulation of ASPM expression pronouncedly attenuated the proliferation, colony formation, and the invasive behavior of PCA cells, and dramatically reduced the number of ALDH
+
CSCs and inhibited cancer stemness and tumorigenicity. Mechanistically, ASPM interacts with disheveled-3 (Dvl-3), a cardinal upstream regulator of canonical Wnt signaling, and inhibits its proteasome-dependent degradation, thereby increasing its protein stability and enabling the Wnt-induced β-catenin transcriptional activity in PCA cells. In keeping with the role of ASPM as a CSC-regulator, ASPM co-localizes with ALDH in PCA tissues and its expression exhibits high intra-tumoral heterogeneity. The proportion of high-ASPM-expressing cells in the tumor inversely correlates with the relapse-free survival of PCA patients. Collectively, our data points to ASPM as a novel oncoprotein and an essential regulator of Wnt signaling and cancer stemness in PCA, which has important clinical and therapeutic significance.
AB -
Recurrent and hormone-refractory prostate cancer (PCA) exhibits aggressive behaviors while current therapeutic approaches show little effect of prolonging the survival of patients with PCA. Thus, a deeper understanding of the patho-molecular mechanisms underlying the disease progression in PCA is crucial to identify novel diagnostic and/or therapeutic targets to improve the outcome of patients. Recent evidence suggests that activation of Wnt signaling in cancer stem cells (CSCs) contributes to cancer progression in malignant tumors. Here, we report that a novel Wnt co-activator ASPM (abnormal spindle-like microcephaly associated) maintains the prostate CSC subpopulation by augmenting the Wnt-β-catenin signaling in PCA. ASPM expression is incrementally upregulated in primary and metastatic PCA, implicating its potential role in PCA progression. Consistently, downregulation of ASPM expression pronouncedly attenuated the proliferation, colony formation, and the invasive behavior of PCA cells, and dramatically reduced the number of ALDH
+
CSCs and inhibited cancer stemness and tumorigenicity. Mechanistically, ASPM interacts with disheveled-3 (Dvl-3), a cardinal upstream regulator of canonical Wnt signaling, and inhibits its proteasome-dependent degradation, thereby increasing its protein stability and enabling the Wnt-induced β-catenin transcriptional activity in PCA cells. In keeping with the role of ASPM as a CSC-regulator, ASPM co-localizes with ALDH in PCA tissues and its expression exhibits high intra-tumoral heterogeneity. The proportion of high-ASPM-expressing cells in the tumor inversely correlates with the relapse-free survival of PCA patients. Collectively, our data points to ASPM as a novel oncoprotein and an essential regulator of Wnt signaling and cancer stemness in PCA, which has important clinical and therapeutic significance.
UR - http://www.scopus.com/inward/record.url?scp=85054385002&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054385002&partnerID=8YFLogxK
U2 - 10.1038/s41388-018-0497-4
DO - 10.1038/s41388-018-0497-4
M3 - Article
C2 - 30266990
AN - SCOPUS:85054385002
SN - 0950-9232
VL - 38
SP - 1340
EP - 1353
JO - Oncogene
JF - Oncogene
IS - 8
ER -