TY - JOUR
T1 - Apply Fuzzy Classification to Colon Polyp Screening
AU - Chiang, John I-Jen
AU - Shieh, Ming Jium
AU - Hsu, Jane Yung jen
AU - Wong, Jau-Ming
PY - 2002
Y1 - 2002
N2 - To deal with hightly uncertain and noise data, for example, biochemical laboratory examinations, a classifier is required to be able to classify an instance into all possible classes and each class is associated with a degree which shows how possible an instance is in that class. According to these degrees, we can discriminate the more possible classes from the less possible classes. The classifier or a expert can pick the most possible one to be the instance class. However, if their discrimination is not distinguishable, it is better that the classifier should not make any prediction, especially when there is incomplete or inadequate data. A fuzzy classifier is proposed to classify the data with noise. Instead of determining a single class for any given instance, fuzzy classification predicts the degree of possibility for every class. Adenomatous polyps are widely accepted to be precancerous lesions and will degenerate into cancers ultimately. Therefore, it is important to generate a predictive method that can identify the patients who have obtained polyps and remove the lesions of them. Considering the uncertainties and noisy in the biochemical laboratory examination data, fuzzy classification trees, which integrate decision tree techniques and fuzzy classifications, provide the efficient way to classify the data in order to generate the model for polyp screening.
AB - To deal with hightly uncertain and noise data, for example, biochemical laboratory examinations, a classifier is required to be able to classify an instance into all possible classes and each class is associated with a degree which shows how possible an instance is in that class. According to these degrees, we can discriminate the more possible classes from the less possible classes. The classifier or a expert can pick the most possible one to be the instance class. However, if their discrimination is not distinguishable, it is better that the classifier should not make any prediction, especially when there is incomplete or inadequate data. A fuzzy classifier is proposed to classify the data with noise. Instead of determining a single class for any given instance, fuzzy classification predicts the degree of possibility for every class. Adenomatous polyps are widely accepted to be precancerous lesions and will degenerate into cancers ultimately. Therefore, it is important to generate a predictive method that can identify the patients who have obtained polyps and remove the lesions of them. Considering the uncertainties and noisy in the biochemical laboratory examination data, fuzzy classification trees, which integrate decision tree techniques and fuzzy classifications, provide the efficient way to classify the data in order to generate the model for polyp screening.
KW - Fuzzy Classifications
KW - Polyp Screening
KW - Fuzzy classification trees
KW - Fuzzy Entropy
M3 - Article
VL - 5
SP - 7
EP - 12
JO - Communications of IICM
JF - Communications of IICM
ER -