Apply Fuzzy Classification to Colon Polyp Screening

John I-Jen Chiang, Ming Jium Shieh, Jane Yung jen Hsu, Jau-Ming Wong

研究成果: 雜誌貢獻文章同行評審


To deal with hightly uncertain and noise data, for example, biochemical laboratory examinations, a classifier is required to be able to classify an instance into all possible classes and each class is associated with a degree which shows how possible an instance is in that class. According to these degrees, we can discriminate the more possible classes from the less possible classes. The classifier or a expert can pick the most possible one to be the instance class. However, if their discrimination is not distinguishable, it is better that the classifier should not make any prediction, especially when there is incomplete or inadequate data. A fuzzy classifier is proposed to classify the data with noise. Instead of determining a single class for any given instance, fuzzy classification predicts the degree of possibility for every class. Adenomatous polyps are widely accepted to be precancerous lesions and will degenerate into cancers ultimately. Therefore, it is important to generate a predictive method that can identify the patients who have obtained polyps and remove the lesions of them. Considering the uncertainties and noisy in the biochemical laboratory examination data, fuzzy classification trees, which integrate decision tree techniques and fuzzy classifications, provide the efficient way to classify the data in order to generate the model for polyp screening.
頁(從 - 到)7-12
期刊Communications of IICM
出版狀態已發佈 - 2002


  • Fuzzy Classifications
  • Polyp Screening
  • Fuzzy classification trees
  • Fuzzy Entropy


深入研究「Apply Fuzzy Classification to Colon Polyp Screening」主題。共同形成了獨特的指紋。