TY - JOUR
T1 - Apoptotic insults to human HepG2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondria-caspase protease pathway
AU - Lee, S. T.
AU - Wu, T. T.
AU - Yu, P. Y.
AU - Chen, R. M.
N1 - Funding Information:
This study was supported by the Cathay General Hospital (97CGH-TMU-14), Taipei City Hospital (095XDAA00251), Taipei County Hospital (096-R-0010), and National Bureau of Controlled Drug, Department of Health (DOH97-NNB-1037), Taipei, Taiwan.
PY - 2009/1
Y1 - 2009/1
N2 - Background. Ketamine is widely used as an i.v. anaesthetic agent and as a drug of abuse. Hepatocytes contribute to the metabolism of endogenous and exogenous substances. This study evaluated the toxic effects of S-(+)-ketamine and possible mechanisms using human hepatoma HepG2 cells as the experimental model. Methods. HepG2 cells were exposed to S-(+)-ketamine. Cell viability and the release of lactate dehydrogenase (LDH) and γ-glutamyl transpeptidase (GPT) were measured to determine the toxicity of S-(+)-ketamine to HepG2 cells. Cell morphology, DNA fragmentation, and apoptotic cells were analysed to evaluate the mechanism of S-(+)-ketamine-induced cell death. Amounts of Bax, an apoptotic protein, and cytochrome c in the cytoplasm or mitochondria were quantified by immunoblotting. Cellular adenosine triphosphate levels were analysed using a bioluminescence assay. Caspases-3, -9, and -6 were measured fluorometrically. Results. Exposure of HepG2 cells to S-(+)-ketamine increased the release of LDH and GPT, but decreased cell viability (all P<0.01). S-(+)-Ketamine time-dependently caused shrinkage of HepG2 cells. Exposure to S-(+)-ketamine led to significant DNA fragmentation and cell apoptosis (P=0.003 and 0.002). S-(+)-Ketamine increased translocation of Bax from the cytoplasm to mitochondria, but decreased the mitochondrial membrane potential and cellular adenosine triphosphate levels (all P<0.01). Sequentially, cytosolic cytochrome c levels and activities of caspases-9, -3, and -6 were augmented after S-(+)-ketamine administration (all P<0.001). Z-VEID-FMK, an inhibitor of caspase-6, alleviated the S-(+)-ketamine-induced augmentation of caspase-6 activity, DNA fragmentation, and cell apoptosis (all P<0.001). Conclusions. This study shows that S-(+)-ketamine can induce apoptotic insults to human HepG2 cells via a Bax-mitochondria-caspase protease pathway. Thus, we suggest that S-(+)-ketamine at a clinically relevant or an abused concentration may induce liver dysfunction possibly due to its toxicity to hepatocytes.
AB - Background. Ketamine is widely used as an i.v. anaesthetic agent and as a drug of abuse. Hepatocytes contribute to the metabolism of endogenous and exogenous substances. This study evaluated the toxic effects of S-(+)-ketamine and possible mechanisms using human hepatoma HepG2 cells as the experimental model. Methods. HepG2 cells were exposed to S-(+)-ketamine. Cell viability and the release of lactate dehydrogenase (LDH) and γ-glutamyl transpeptidase (GPT) were measured to determine the toxicity of S-(+)-ketamine to HepG2 cells. Cell morphology, DNA fragmentation, and apoptotic cells were analysed to evaluate the mechanism of S-(+)-ketamine-induced cell death. Amounts of Bax, an apoptotic protein, and cytochrome c in the cytoplasm or mitochondria were quantified by immunoblotting. Cellular adenosine triphosphate levels were analysed using a bioluminescence assay. Caspases-3, -9, and -6 were measured fluorometrically. Results. Exposure of HepG2 cells to S-(+)-ketamine increased the release of LDH and GPT, but decreased cell viability (all P<0.01). S-(+)-Ketamine time-dependently caused shrinkage of HepG2 cells. Exposure to S-(+)-ketamine led to significant DNA fragmentation and cell apoptosis (P=0.003 and 0.002). S-(+)-Ketamine increased translocation of Bax from the cytoplasm to mitochondria, but decreased the mitochondrial membrane potential and cellular adenosine triphosphate levels (all P<0.01). Sequentially, cytosolic cytochrome c levels and activities of caspases-9, -3, and -6 were augmented after S-(+)-ketamine administration (all P<0.001). Z-VEID-FMK, an inhibitor of caspase-6, alleviated the S-(+)-ketamine-induced augmentation of caspase-6 activity, DNA fragmentation, and cell apoptosis (all P<0.001). Conclusions. This study shows that S-(+)-ketamine can induce apoptotic insults to human HepG2 cells via a Bax-mitochondria-caspase protease pathway. Thus, we suggest that S-(+)-ketamine at a clinically relevant or an abused concentration may induce liver dysfunction possibly due to its toxicity to hepatocytes.
KW - Anaesthetics i.v., ketamine
KW - Liver, hepatotoxicity
KW - Metabolism, ATP, DNA
KW - Theories of anaesthetic action, cellular mechanisms
UR - http://www.scopus.com/inward/record.url?scp=57349180886&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57349180886&partnerID=8YFLogxK
U2 - 10.1093/bja/aen322
DO - 10.1093/bja/aen322
M3 - Article
C2 - 19001360
AN - SCOPUS:57349180886
SN - 0007-0912
VL - 102
SP - 80
EP - 89
JO - British Journal of Anaesthesia
JF - British Journal of Anaesthesia
IS - 1
ER -