TY - JOUR
T1 - Anticancer Activities of 9-chloro-6-(piperazin-1-yl)-11H-indeno[1,2-c] quinolin-11-one (SJ10) in Glioblastoma Multiforme (GBM) Chemoradioresistant Cell Cycle-Related Oncogenic Signatures
AU - Mokgautsi, Ntlotlang
AU - Kuo, Yu Cheng
AU - Tang, Sung Ling
AU - Liu, Feng Cheng
AU - Chen, Shiang Jiun
AU - Wu, Alexander T.H.
AU - Huang, Hsu Shan
N1 - Funding Information:
Funding: Hsu-Shan Huang was funded by the Ministry of Science and Technology (MOST 109-2113-M-038-003 and MOST 110-2314-B-038-120). Alexander TH Wu was funded by the Ministry of Education, Taipei Medical University (DP2-110-21121-03-C-09 and DP2-110-21121-01-H-03-03).
Funding Information:
Acknowledgments: The authors thank the NCI Developmental Therapeutics Program (DTP) for the 60-cancer-cell-line screening of selected compounds described in this paper, funded by the National Cancer Institute, National Institutes of Health (NIH-NCI). The present study was supported by grants (MOST110-2314-B-038-120) from the Ministry of Science and Technology, Taiwan. We also acknowledge editing services provided by the Office of Research and Development, Taipei Medical University.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Current anticancer treatments are inefficient against glioblastoma multiforme (GBM), which remains one of the most aggressive and lethal cancers. Evidence has shown the presence of glioblastoma stem cells (GSCs), which are chemoradioresistant and associated with high invasive capabilities in normal brain tissues. Moreover, accumulating studies have indicated that radiotherapy contributes to abnormalities in cell cycle checkpoints, including the G1/S and S phases, which may potentially lead to resistance to radiation. Through computational simulations using bioinfor-matics, we identified several GBM oncogenes that are involved in regulating the cell cycle. Cyclin B1 (CCNB1) is one of the cell cycle-related genes that was found to be upregulated in GBM. Over-expression of CCNB1 was demonstrated to be associated with higher grades, proliferation, and metastasis of GBM. Additionally, increased expression levels of CCNB1 were reported to regulate activation of mitogen-activated protein kinase 7 (MAPK7) in the G2/M phase, which consequently modulates mitosis; additionally, in clinical settings, MAPK7 was demonstrated to promote resistance to temozolomide (TMZ) and poor patient survival. Therefore, MAPK7 is a potential novel drug target due to its dysregulation and association with TMZ resistance in GBM. Herein, we identified MAPK7/extracellular regulated kinase 5 (ERK5) genes as being overexpressed in GBM tumors compared to normal tissues. Moreover, our analysis revealed increased levels of the cell division control protein homolog (CDC42), a protein which is also involved in regulating the cell cycle through the G1 phase in GBM tissues. This therefore suggests crosstalk among CCNB1/CDC42/MAPK7/cluster of differentiation 44 (CD44) oncogenic signatures in GBM through the cell cycle. We further evaluated a newly synthesized small molecule, SJ10, as a potential target agent of the CCNB1/CDC42/MAPK7/CD44 genes through target prediction tools and found that SJ10 was indeed a target compound for the above-mentioned genes; in addition, it displayed inhibitory activities against these oncogenes as observed from molecular docking analysis.
AB - Current anticancer treatments are inefficient against glioblastoma multiforme (GBM), which remains one of the most aggressive and lethal cancers. Evidence has shown the presence of glioblastoma stem cells (GSCs), which are chemoradioresistant and associated with high invasive capabilities in normal brain tissues. Moreover, accumulating studies have indicated that radiotherapy contributes to abnormalities in cell cycle checkpoints, including the G1/S and S phases, which may potentially lead to resistance to radiation. Through computational simulations using bioinfor-matics, we identified several GBM oncogenes that are involved in regulating the cell cycle. Cyclin B1 (CCNB1) is one of the cell cycle-related genes that was found to be upregulated in GBM. Over-expression of CCNB1 was demonstrated to be associated with higher grades, proliferation, and metastasis of GBM. Additionally, increased expression levels of CCNB1 were reported to regulate activation of mitogen-activated protein kinase 7 (MAPK7) in the G2/M phase, which consequently modulates mitosis; additionally, in clinical settings, MAPK7 was demonstrated to promote resistance to temozolomide (TMZ) and poor patient survival. Therefore, MAPK7 is a potential novel drug target due to its dysregulation and association with TMZ resistance in GBM. Herein, we identified MAPK7/extracellular regulated kinase 5 (ERK5) genes as being overexpressed in GBM tumors compared to normal tissues. Moreover, our analysis revealed increased levels of the cell division control protein homolog (CDC42), a protein which is also involved in regulating the cell cycle through the G1 phase in GBM tissues. This therefore suggests crosstalk among CCNB1/CDC42/MAPK7/cluster of differentiation 44 (CD44) oncogenic signatures in GBM through the cell cycle. We further evaluated a newly synthesized small molecule, SJ10, as a potential target agent of the CCNB1/CDC42/MAPK7/CD44 genes through target prediction tools and found that SJ10 was indeed a target compound for the above-mentioned genes; in addition, it displayed inhibitory activities against these oncogenes as observed from molecular docking analysis.
KW - Bioinformatics
KW - Chemoradioresistance
KW - Genetic heterogeneity
KW - Glioblastoma multiforme (GBM)
KW - Molecular docking
KW - National Cancer Institute (NCI)-60
KW - Temozolomide (TMZ)
UR - http://www.scopus.com/inward/record.url?scp=85122162725&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122162725&partnerID=8YFLogxK
U2 - 10.3390/cancers14010262
DO - 10.3390/cancers14010262
M3 - Article
AN - SCOPUS:85122162725
SN - 2072-6694
VL - 14
JO - Cancers
JF - Cancers
IS - 1
M1 - 262
ER -