TY - JOUR
T1 - Aged rats show dominant modulation of lower frequency hippocampal theta rhythm during running
AU - Li, Jia Yi
AU - Kuo, Terry B J
AU - Yang, Cheryl C H
N1 - Publisher Copyright:
© 2016 Elsevier Inc.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - Aging causes considerable decline in both physiological and mental functions, particularly cognitive function. The hippocampal theta rhythm (4–12 Hz) is related to both cognition and locomotion. Aging-related findings of the frequency and amplitude of hippocampal theta oscillations are inconsistent and occasionally contradictory. This inconsistency may be due to the effects of the sleep/wake state and different frequency subbands being overlooked. We assumed that aged rats have lower responses of the hippocampal theta rhythm during running, which is mainly due to the dominant modulation of theta frequency subbands related to cognition. By simultaneously recording electroencephalography, physical activity (PA), and the heart rate (HR), this experiment explored the theta oscillations before, during, and after treadmill running at a constant speed in 8-week-old (adult) and 60-week-old (middle-aged) rats. Compared with adult rats, the middle-aged rats exhibited lower theta activity in all frequency ranges before running. Running increased the theta frequency (Frq, 4–12 Hz), total activity of the whole theta band (total power, TP), activity of the middle theta frequency (MT, 6.5–9.5 Hz), and PA in both age groups. However, the middle-aged rats still showed fewer changes in these parameters during the whole running process. After the waking baseline values were substracted, middle-aged rats showed significantly fewer differences in ΔFrq, ΔTP, and ΔMT but significantly more differences in low-frequency theta activity (4.0–6.5 Hz) and HR than the adult rats did. Therefore, the decreasing activity and response of the whole theta band in the middle-aged rats resulted in dominant modulation of the middle to lower frequency (4.0–9.5 Hz) theta rhythm. The different alterations in the theta rhythm during treadmill running in the two groups may reflect that learning decline with age.
AB - Aging causes considerable decline in both physiological and mental functions, particularly cognitive function. The hippocampal theta rhythm (4–12 Hz) is related to both cognition and locomotion. Aging-related findings of the frequency and amplitude of hippocampal theta oscillations are inconsistent and occasionally contradictory. This inconsistency may be due to the effects of the sleep/wake state and different frequency subbands being overlooked. We assumed that aged rats have lower responses of the hippocampal theta rhythm during running, which is mainly due to the dominant modulation of theta frequency subbands related to cognition. By simultaneously recording electroencephalography, physical activity (PA), and the heart rate (HR), this experiment explored the theta oscillations before, during, and after treadmill running at a constant speed in 8-week-old (adult) and 60-week-old (middle-aged) rats. Compared with adult rats, the middle-aged rats exhibited lower theta activity in all frequency ranges before running. Running increased the theta frequency (Frq, 4–12 Hz), total activity of the whole theta band (total power, TP), activity of the middle theta frequency (MT, 6.5–9.5 Hz), and PA in both age groups. However, the middle-aged rats still showed fewer changes in these parameters during the whole running process. After the waking baseline values were substracted, middle-aged rats showed significantly fewer differences in ΔFrq, ΔTP, and ΔMT but significantly more differences in low-frequency theta activity (4.0–6.5 Hz) and HR than the adult rats did. Therefore, the decreasing activity and response of the whole theta band in the middle-aged rats resulted in dominant modulation of the middle to lower frequency (4.0–9.5 Hz) theta rhythm. The different alterations in the theta rhythm during treadmill running in the two groups may reflect that learning decline with age.
KW - Aging
KW - Heart rate
KW - Hippocampal theta rhythm
KW - Physical activity
KW - Treadmill running
UR - http://www.scopus.com/inward/record.url?scp=84982733914&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982733914&partnerID=8YFLogxK
U2 - 10.1016/j.exger.2016.08.001
DO - 10.1016/j.exger.2016.08.001
M3 - Article
AN - SCOPUS:84982733914
SN - 0531-5565
VL - 83
SP - 63
EP - 70
JO - Experimental Gerontology
JF - Experimental Gerontology
ER -