TY - JOUR
T1 - A transferable coarse-grained model for hydrogen-bonding liquids
AU - Golubkov, Pavel A.
AU - Wu, Johnny C.
AU - Ren, Pengyu
PY - 2008/4/9
Y1 - 2008/4/9
N2 - We present here a recent development of a generalized coarse-grained model for use in molecular simulations. In this model, interactions between coarse-grained particles consist of both van der Waals and explicit electrostatic components. As a result, the coarse-grained model offers the transferability that is lacked by most current effective-potential based approaches. The previous center-of-mass framework (P. A. Golubkov and P. Ren, J. Chem. Phys., 2006, 125, 64103) is generalized here to include arbitrary off-center interaction sites for both Gay-Berne and multipoles. The new model has been applied to molecular dynamic simulations of neat methanol liquid. By placing a single point multipole at the oxygen atom rather than at the center of mass of methanol, there is a significant improvement in the ability to capture hydrogen-bonding. The critical issue of transferability of the coarse-grained model is verified on methanol-water mixtures, using parameters derived from neat liquids without any modification. The mixture density and internal energy from coarse-grained molecular dynamics simulations show good agreement with experimental measurements, on a par with what has been obtained from more detailed atomic models. By mapping the dynamics trajectory from the coarse-grained simulation into the all-atom counterpart, we are able to investigate atomic-level structure and interaction. Atomic radial distribution functions of neat methanol, neat water and mixtures compare favorably to experimental measurements. Furthermore, hydrogen-bonded 6- and 7-molecule chains of water and methanol observed in the mixture are in agreement with previous atomic simulations.
AB - We present here a recent development of a generalized coarse-grained model for use in molecular simulations. In this model, interactions between coarse-grained particles consist of both van der Waals and explicit electrostatic components. As a result, the coarse-grained model offers the transferability that is lacked by most current effective-potential based approaches. The previous center-of-mass framework (P. A. Golubkov and P. Ren, J. Chem. Phys., 2006, 125, 64103) is generalized here to include arbitrary off-center interaction sites for both Gay-Berne and multipoles. The new model has been applied to molecular dynamic simulations of neat methanol liquid. By placing a single point multipole at the oxygen atom rather than at the center of mass of methanol, there is a significant improvement in the ability to capture hydrogen-bonding. The critical issue of transferability of the coarse-grained model is verified on methanol-water mixtures, using parameters derived from neat liquids without any modification. The mixture density and internal energy from coarse-grained molecular dynamics simulations show good agreement with experimental measurements, on a par with what has been obtained from more detailed atomic models. By mapping the dynamics trajectory from the coarse-grained simulation into the all-atom counterpart, we are able to investigate atomic-level structure and interaction. Atomic radial distribution functions of neat methanol, neat water and mixtures compare favorably to experimental measurements. Furthermore, hydrogen-bonded 6- and 7-molecule chains of water and methanol observed in the mixture are in agreement with previous atomic simulations.
UR - http://www.scopus.com/inward/record.url?scp=41549097838&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=41549097838&partnerID=8YFLogxK
U2 - 10.1039/b715841f
DO - 10.1039/b715841f
M3 - Article
C2 - 18688358
AN - SCOPUS:41549097838
SN - 1463-9076
VL - 10
SP - 2050
EP - 2057
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 15
ER -