摘要
Comparison of the survival of clinically detected and screen-detected cancer cases from either population-based service screening programs or opportunistic screening is often distorted by both lead-time and length biases. Both are correlated with each other and are also affected by measurement errors and tumor attributes such as regional lymph node spread. We propose a general stochastic approach to calibrate the survival benefit of screen-detected cancers related to both biases, measurement errors, and tumor attributes. We apply our proposed method to breast cancer screening data from one arm of the Swedish Two-County trial in the trial period together with the subsequent service screening for the same cohort. When there is no calibration, the results-assuming a constant (exponentially distributed) post-lead-time hazard rate (i. e., a homogeneous stochastic process)-show a 57% reduction in breast cancer death over 25 years. After correction, the reduction was 30%, with approximately 12% of the overestimation being due to lead-time bias and 15% due to length bias. The additional impacts of measurement errors (sensitivity and specificity) depend on the type of the proposed model and follow-up time. The corresponding analysis when the Weibull distribution was applied-relaxing the assumption of a constant hazard rate-yielded similar findings and lacked statistical significance compared with the exponential model. The proposed calibration approach allows the benefit of a service cancer screening program to be fairly evaluated. This article has supplementary materials online.
原文 | 英語 |
---|---|
頁(從 - 到) | 1339-1359 |
頁數 | 21 |
期刊 | Journal of the American Statistical Association |
卷 | 107 |
發行號 | 500 |
DOIs | |
出版狀態 | 已發佈 - 2012 |
ASJC Scopus subject areas
- 統計與概率
- 統計、概率和不確定性