摘要
A volume based surgery simulator described herein provides cutting simulations for diverse tools used in spine surgery and morphological simulations of bone reposition, deletion and fusion. A tool coordinate based method is used to obtain constant and simple surface equations for representing the tools. Such representations give efficient computations for cutting surface changes and calculate pre-computed transformations for fast summating the cutting force vectors along the haptic device axes from chip removal loads on a tool surface. This study extends the traditional one-scalar volume with geometric and topologic data. Real-time cutting simulations for predicting tissue surface changes and cutting forces can be achieved by manipulating extended geometric volume data. The manipulation of extended topological volume data can detect new separate bones generated during the cutting simulations and enables morphological simulations of repositioning, deleting or fusing the separate bones. Realistic 3D images with fine tissue surface features obtained from simulating three typical surgeries located on the cervical, thoracic and lumbar spine respectively demonstrate that the proposed simulator can be an excellent tool for planning, confirming and rehearsing various complex spine surgeries such as abnormal tissue removal, spine decompression and morphology correction.
原文 | 英語 |
---|---|
文章編號 | 1550005 |
期刊 | Biomedical Engineering - Applications, Basis and Communications |
卷 | 27 |
發行號 | 1 |
DOIs | |
出版狀態 | 已發佈 - 2月 14 2015 |
ASJC Scopus subject areas
- 生物物理學
- 生物醫學工程
- 生物工程