TY - JOUR
T1 - A severe vicious cycle in uncontrolled subarachnoid hemorrhage
T2 - The effects on cerebral blood flow and hemodynamic responses upon intracranial hypertension
AU - Su, Chain Fa
AU - Yang, Yi Ling
AU - Lee, Ming Che
AU - Chen, Hsing I.
PY - 2006
Y1 - 2006
N2 - In subarachnoid hemorrhage (SAH), Cushing postulated that the increase in systemic arterial pressure (SAP) in response to elevation of intracranial pressure (ICP) was beneficial to cerebral perfusion. However, in uncontrolled SAH, the increased SAP may cause more bleeding into the subarachnoid space and further increase the ICP. We created an animal model to simulate SAH by connecting a femoral arterial catheter to the subarachnoid space. The global cerebral blood flow (CBF) was measured with a venous outflow method. The purposes were to observe the CBF change under the simulated SAH, and to evaluate the effects of an adrenergic blocker and a vasodilator. In addition, spectral analysis of the aortic pressure and flow was employed for the analysis of hemodynamic changes at various ICP levels. When the femoral arterial blood was allowed to flow into the subarachnoid space, the ICP was elevated. The Cushing response to increased ICP caused an increase in SAP. A vicious cycle was generated between ICP and SAP. The CBF under the vicious cycle was greatly depressed. The dog developed pulmonary edema (PE) within 5 mins. An α-adrenergic blocker (phentolamine) and a vasodilator (nitroprusside) were beneficial to the reduction of SAP and ICP, improvement of CBF, and prevention of PE. Hemodynamic analysis revealed that graded increases in ICP caused increases in SAP, total peripheral resistance, arterial impedance, and pulse reflection with decreases in stroke volume, cardiac output and arterial compliance. The hemodynamic changes may contribute to acute left ventricular failure that leads to pressure and volume loading in the lung circulation, and finally acute PE.
AB - In subarachnoid hemorrhage (SAH), Cushing postulated that the increase in systemic arterial pressure (SAP) in response to elevation of intracranial pressure (ICP) was beneficial to cerebral perfusion. However, in uncontrolled SAH, the increased SAP may cause more bleeding into the subarachnoid space and further increase the ICP. We created an animal model to simulate SAH by connecting a femoral arterial catheter to the subarachnoid space. The global cerebral blood flow (CBF) was measured with a venous outflow method. The purposes were to observe the CBF change under the simulated SAH, and to evaluate the effects of an adrenergic blocker and a vasodilator. In addition, spectral analysis of the aortic pressure and flow was employed for the analysis of hemodynamic changes at various ICP levels. When the femoral arterial blood was allowed to flow into the subarachnoid space, the ICP was elevated. The Cushing response to increased ICP caused an increase in SAP. A vicious cycle was generated between ICP and SAP. The CBF under the vicious cycle was greatly depressed. The dog developed pulmonary edema (PE) within 5 mins. An α-adrenergic blocker (phentolamine) and a vasodilator (nitroprusside) were beneficial to the reduction of SAP and ICP, improvement of CBF, and prevention of PE. Hemodynamic analysis revealed that graded increases in ICP caused increases in SAP, total peripheral resistance, arterial impedance, and pulse reflection with decreases in stroke volume, cardiac output and arterial compliance. The hemodynamic changes may contribute to acute left ventricular failure that leads to pressure and volume loading in the lung circulation, and finally acute PE.
KW - Adrenergic blocker
KW - Cerebral blood flow
KW - Cushing response
KW - Hemodynamic changes
KW - Intracranial pressure
KW - Systemic arterial pressure
KW - Vasodilator
KW - Vicious cycle
UR - http://www.scopus.com/inward/record.url?scp=33747622282&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33747622282&partnerID=8YFLogxK
M3 - Article
C2 - 16900706
AN - SCOPUS:33747622282
SN - 0304-4920
VL - 49
SP - 56
EP - 63
JO - Chinese Journal of Physiology
JF - Chinese Journal of Physiology
IS - 1
ER -