TY - JOUR
T1 - A novel function of the lysophosphatidic acid receptor 3 (LPAR3) gene in zebrafish on modulating anxiety, circadian rhythm locomotor activity, and short-term memory
AU - Lin, Yu Nung
AU - Audira, Gilbert
AU - Malhotra, Nemi
AU - Anh, Nguyen Thi Ngoc
AU - Siregar, Petrus
AU - Lu, Jen Her
AU - Lee, Hsinyu
AU - Hsiao, Chung Der
N1 - Funding Information:
Funding: This research was funded by the Ministry of Science Technology, Taiwan, grant numbers MOST107-2622-B-033-001-CC2 and MOST108-2622-B-033-001-CC2 to C.-D.H. and MOST 108-2314-B-002-115-MY2 to Hsinyu Lee.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/4/2
Y1 - 2020/4/2
N2 - Lysophosphatidic acid (LPA) is a small lysophospholipid molecule that activates multiple cellular functions through pathways with G-protein-coupled receptors. So far, six LPA receptors (LPAR1 to LPAR6) have been discovered and each one of them can connect to the downstream cell message-transmitting network. A previous study demonstrated that LPA receptors found in blood-producing stem cells can enhance erythropoietic processes through the activation of LPAR3. In the current study, newly discovered functions of LPAR3 were identified through extensive behavioral tests in lpar3 knockout (KO) zebrafish. It was found that the adult lpar3 KO zebrafish display an abnormal movement orientation and altered exploratory behavior compared to that of the control group in the three-dimensional locomotor and novel tank tests, respectively. Furthermore, consistent with those results, in the circadian rhythm locomotor activity test, the lpar3 KO zebrafish showed a lower level of angular velocity and average speed during the light cycles, indicating an hyperactivity-like behavior. In addition, the mutant fish also exhibited considerably higher locomotor activity during the dark cycle. Supporting those findings, this phenomenon was also displayed in the lpar3 KO zebrafish larvae. Furthermore, several important behavior alterations were also observed in the adult lpar3 KO fish, including a lower degree of aggression, less interest in conspecific social interaction, and looser shoal formation. However, there was no significant difference regarding the predator avoidance behavior between the mutant and the control fish. In addition, lpar3 KO zebrafish displayed memory deficiency in the passive avoidance test. These in vivo results support for the first time that the lpar3 gene plays a novel role in modulating behaviors of anxiety, aggression, social interaction, circadian rhythm locomotor activity, and memory retention in zebrafish.
AB - Lysophosphatidic acid (LPA) is a small lysophospholipid molecule that activates multiple cellular functions through pathways with G-protein-coupled receptors. So far, six LPA receptors (LPAR1 to LPAR6) have been discovered and each one of them can connect to the downstream cell message-transmitting network. A previous study demonstrated that LPA receptors found in blood-producing stem cells can enhance erythropoietic processes through the activation of LPAR3. In the current study, newly discovered functions of LPAR3 were identified through extensive behavioral tests in lpar3 knockout (KO) zebrafish. It was found that the adult lpar3 KO zebrafish display an abnormal movement orientation and altered exploratory behavior compared to that of the control group in the three-dimensional locomotor and novel tank tests, respectively. Furthermore, consistent with those results, in the circadian rhythm locomotor activity test, the lpar3 KO zebrafish showed a lower level of angular velocity and average speed during the light cycles, indicating an hyperactivity-like behavior. In addition, the mutant fish also exhibited considerably higher locomotor activity during the dark cycle. Supporting those findings, this phenomenon was also displayed in the lpar3 KO zebrafish larvae. Furthermore, several important behavior alterations were also observed in the adult lpar3 KO fish, including a lower degree of aggression, less interest in conspecific social interaction, and looser shoal formation. However, there was no significant difference regarding the predator avoidance behavior between the mutant and the control fish. In addition, lpar3 KO zebrafish displayed memory deficiency in the passive avoidance test. These in vivo results support for the first time that the lpar3 gene plays a novel role in modulating behaviors of anxiety, aggression, social interaction, circadian rhythm locomotor activity, and memory retention in zebrafish.
KW - Anxiety
KW - Behavior
KW - Circadian rhythm locomotor activity
KW - Lysophosphatidic acid receptor
KW - Memory
KW - Zebrafish
UR - http://www.scopus.com/inward/record.url?scp=85083717776&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083717776&partnerID=8YFLogxK
U2 - 10.3390/ijms21082837
DO - 10.3390/ijms21082837
M3 - Article
C2 - 32325720
AN - SCOPUS:85083717776
SN - 1661-6596
VL - 21
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 8
M1 - 2837
ER -