摘要
Current plasma fractionation technology combines ethanol precipitation with packed bed chromatography. We have developed a novel core fractionation process comprising five expanded bed adsorption (EBA) chromatographic steps on high-density modified agarose/tungsten carbide beads. Plasma was first chromatographed on two diethyl amino-ethyl (DEAE)-tungsten carbide agarose adsorbents (respective mean particle diameters of dv(0.5)=190 and 37μm) to isolate at 50 to 80% recovery a fraction containing 4 to 7IU/ml factor II (FII), factor IX (FIX), and factor X (FX) (specific activity >1IU/mg) and another enriched in FVIII and von Willebrand factor (vWF) (∼1IU/ml and 0.6IU/mg, respectively). The flow-through was adsorbed on 4% agarose-10% tungsten carbide beads coupled with an acidic mixed-mode ligand to isolate an 80% pure immunoglobulin G (IgG) at a 93% step recovery. A highly purified α1-antitrypsin was isolated at 95% step recovery by adsorbing the flow-through on 4% epoxy-crosslinked agarose-10% tungsten carbide adsorbent material coupled with a cationic ligand. Isolation of 98% pure albumin was achieved at a 99% step recovery by pH 4.5 adsorption of the flow-through on 6% agarose-10% tungsten carbide beads coupled with an acidic mixed-mode ligand. EBA may represent a feasible alternative core plasma fractionation tool.
原文 | 英語 |
---|---|
頁(從 - 到) | 102-109 |
頁數 | 8 |
期刊 | Analytical Biochemistry |
卷 | 399 |
發行號 | 1 |
DOIs | |
出版狀態 | 已發佈 - 4月 2010 |
對外發佈 | 是 |
ASJC Scopus subject areas
- 生物化學
- 生物物理學
- 細胞生物學
- 分子生物學