TY - JOUR
T1 - A novel abundance-based algorithm for binning metagenomic sequences using l-tuples
AU - Wu, Yu Wei
AU - Ye, Yuzhen
PY - 2011/3/1
Y1 - 2011/3/1
N2 - Metagenomics is the study of microbial communities sampled directly from their natural environment, without prior culturing. Among the computational tools recently developed for metagenomic sequence analysis, binning tools attempt to classify the sequences in a metagenomic dataset into different bins (i.e., species), based on various DNA composition patterns (e.g., the tetramer frequencies) of various genomes. Composition-based binning methods, however, cannot be used to classify very short fragments, because of the substantial variation of DNA composition patterns within a single genome. We developed a novel approach (AbundanceBin) for metagenomics binning by utilizing the different abundances of species living in the same environment. AbundanceBin is an application of the Lander-Waterman model to metagenomics, which is based on the l-tuple content of the reads. AbundanceBin achieved accurate, unsupervised, clustering of metagenomic sequences into different bins, such that the reads classified in a bin belong to species of identical or very similar abundances in the sample. In addition, AbundanceBin gave accurate estimations of species abundances, as well as their genome sizes-two important parameters for characterizing a microbial community. We also show that AbundanceBin performed well when the sequence lengths are very short (e.g., 75 bp) or have sequencing errors. By combining AbundanceBin and a composition-based method (MetaCluster), we can achieve even higher binning accuracy. Supplementary Material is available at www.liebertonline.com/cmb.
AB - Metagenomics is the study of microbial communities sampled directly from their natural environment, without prior culturing. Among the computational tools recently developed for metagenomic sequence analysis, binning tools attempt to classify the sequences in a metagenomic dataset into different bins (i.e., species), based on various DNA composition patterns (e.g., the tetramer frequencies) of various genomes. Composition-based binning methods, however, cannot be used to classify very short fragments, because of the substantial variation of DNA composition patterns within a single genome. We developed a novel approach (AbundanceBin) for metagenomics binning by utilizing the different abundances of species living in the same environment. AbundanceBin is an application of the Lander-Waterman model to metagenomics, which is based on the l-tuple content of the reads. AbundanceBin achieved accurate, unsupervised, clustering of metagenomic sequences into different bins, such that the reads classified in a bin belong to species of identical or very similar abundances in the sample. In addition, AbundanceBin gave accurate estimations of species abundances, as well as their genome sizes-two important parameters for characterizing a microbial community. We also show that AbundanceBin performed well when the sequence lengths are very short (e.g., 75 bp) or have sequencing errors. By combining AbundanceBin and a composition-based method (MetaCluster), we can achieve even higher binning accuracy. Supplementary Material is available at www.liebertonline.com/cmb.
KW - Binning
KW - EM algorithm
KW - metagenomics
KW - Poisson distribution
UR - http://www.scopus.com/inward/record.url?scp=79952425617&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952425617&partnerID=8YFLogxK
U2 - 10.1089/cmb.2010.0245
DO - 10.1089/cmb.2010.0245
M3 - Article
C2 - 21385052
AN - SCOPUS:79952425617
SN - 1066-5277
VL - 18
SP - 523
EP - 534
JO - Journal of Computational Biology
JF - Journal of Computational Biology
IS - 3
ER -