TY - JOUR
T1 - A new perspective on fish oil
T2 - The prevention of alcoholic liver disease
AU - Yang, Suh Ching
N1 - Funding Information:
We appreciate Ministry of Science and Technology, Taiwan for providing the research funding and Viva Life Science for providing fish oil.
Publisher Copyright:
© 2021 by Japan Oil Chemists’ Society.
PY - 2021
Y1 - 2021
N2 - The mechanisms of alcoholic liver diseases (ALD) are very complex and interrelated, including abnormal lipid metabolism, oxidative stress, and gut-derived endotoxin pathway. On the other hand, fish oil is rich in n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which decrease blood triglyceride concentration in hypertriglycemia patients and show protective effects against fatty liver. However, there is limited evidence from studies of the relationship between fish oil and ALD based on the viewpoint of the intestinal integrity and microflora. Therefore, this review discusses the mechanism of amelioration for ALD by fish oil. Based on our previous studies, partial replacement of olive oil by fish oil in alcohol-containing liquid diet ameliorated the liver damage including fatty liver and inflammation in rats. Based on these results, the mechanisms of hepatoprotective effects due to fish oil substitution were discussed in three parts, such as regulating lipid metabolism, decreasing oxidative stress and maintaining intestinal health. First of all, we found that fish oil substitution increased plasma adiponectin levels, and then increasing MCAD and CPT-1 mRNA levels to accelerate fatty acid oxidation in liver, then further prevent ethanol-induced hepatosteatosis in rats with chronic alcohol-feeding. Fish oil replacement also enhanced hepatic autophagy flux, which enhanced lipid degradation, then inhibited lipid accumulation in liver. Secondly, the appreciable proportion of fish oil decreased lipid peroxidation by reducing the protein expression of cytochrome p450 2E1 in chronic alcoholfeeding rats. We also speculated that the appropriate proportion of n-6 and n-3 PUFAs is very important for preventing alcoholic liver disease. At last, substituting fish oil for olive oil normalized the intestinal permeability and fecal microbiota composition, thus providing a low plasma endotoxin level and inflammatory responses, which exert ameliorative effects on ethanol-induced liver injuries in rats.
AB - The mechanisms of alcoholic liver diseases (ALD) are very complex and interrelated, including abnormal lipid metabolism, oxidative stress, and gut-derived endotoxin pathway. On the other hand, fish oil is rich in n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which decrease blood triglyceride concentration in hypertriglycemia patients and show protective effects against fatty liver. However, there is limited evidence from studies of the relationship between fish oil and ALD based on the viewpoint of the intestinal integrity and microflora. Therefore, this review discusses the mechanism of amelioration for ALD by fish oil. Based on our previous studies, partial replacement of olive oil by fish oil in alcohol-containing liquid diet ameliorated the liver damage including fatty liver and inflammation in rats. Based on these results, the mechanisms of hepatoprotective effects due to fish oil substitution were discussed in three parts, such as regulating lipid metabolism, decreasing oxidative stress and maintaining intestinal health. First of all, we found that fish oil substitution increased plasma adiponectin levels, and then increasing MCAD and CPT-1 mRNA levels to accelerate fatty acid oxidation in liver, then further prevent ethanol-induced hepatosteatosis in rats with chronic alcohol-feeding. Fish oil replacement also enhanced hepatic autophagy flux, which enhanced lipid degradation, then inhibited lipid accumulation in liver. Secondly, the appreciable proportion of fish oil decreased lipid peroxidation by reducing the protein expression of cytochrome p450 2E1 in chronic alcoholfeeding rats. We also speculated that the appropriate proportion of n-6 and n-3 PUFAs is very important for preventing alcoholic liver disease. At last, substituting fish oil for olive oil normalized the intestinal permeability and fecal microbiota composition, thus providing a low plasma endotoxin level and inflammatory responses, which exert ameliorative effects on ethanol-induced liver injuries in rats.
KW - Alcoholic liver disease
KW - Fish oil
KW - Gut permeability
KW - Inflammation
KW - Lipid metabolism
KW - Microbiota composition
KW - Oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=85120683591&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120683591&partnerID=8YFLogxK
U2 - 10.5650/jos.ess21216
DO - 10.5650/jos.ess21216
M3 - Article
AN - SCOPUS:85120683591
SN - 1345-8957
VL - 70
SP - 1531
EP - 1538
JO - Journal of Oleo Science
JF - Journal of Oleo Science
IS - 11
ER -