摘要

Music can generate a positive effect in runners’ performance and motivation. However, the practical implementation of music intervention during exercise is mostly absent from the literature. Therefore, this paper designs a playback sequence system for joggers by considering music emotion and physiological signals. This playback sequence is implemented by a music selection module that combines artificial intelligence techniques with physiological data and emotional music. In order to make the system operate for a long time, this paper improves the model and selection music module to achieve lower energy consumption. The proposed model obtains fewer FLOPs and parameters by using logarithm scaled Mel-spectrogram as input features. The accuracy, computational complexity, trainable parameters, and inference time are evaluated on the Bi-modal, 4Q emotion, and Soundtrack datasets. The experimental results show that the proposed model is better than that of Sarkar et al. and achieves competitive performance on Bi-modal (84.91%), 4Q emotion (92.04%), and Soundtrack (87.24%) datasets. More specifically, the proposed model reduces the computational complexity and inference time while maintaining the classification accuracy, compared to other models. Moreover, the size of the proposed model for network training is small, which can be applied to mobiles and other devices with limited computing resources. This study designed the overall playback sequence system by considering the relationship between music emotion and physiological situation during exercise. The playback sequence system can be adopted directly during exercise to improve users’ exercise efficiency.

原文英語
文章編號777
期刊Sensors
22
發行號3
DOIs
出版狀態已發佈 - 2月 1 2022

ASJC Scopus subject areas

  • 分析化學
  • 資訊系統
  • 原子與分子物理與光學
  • 生物化學
  • 儀器
  • 電氣與電子工程

指紋

深入研究「A Music Playback Algorithm Based on Residual-Inception Blocks for Music Emotion Classification and Physiological Information」主題。共同形成了獨特的指紋。

引用此