A Microtube Array Membrane (MTAM) Encapsulated Live Fermenting Staphylococcus epidermidis as a Skin Probiotic Patch against Cutibacterium acnes

Albert-Jackson Yang, Shinta Marito, John-Jackson Yang, Sunita Keshari, Chee-Ho Chew, Chien-Chung Chen, Chun-Ming Huang

研究成果: 雜誌貢獻文章同行評審

27 引文 斯高帕斯(Scopus)

摘要

Antibiotics without selectivity for acne treatment may destroy the beneficial microbes in the human microbiome that helps to fight Cutibacterium acnes (C. acnes), a bacterium associated with inflammatory acne vulgaris. Probiotic treatment by direct application of live Staphylococcus epidermidis (S. epidermidis) onto the open acne lesions may run the risk of bloodstream infections. Here, we fabricated the polysulfone microtube array membranes (PSF MTAM) to encapsulate probiotic S.epidermidis. We demonstrate that the application of the encapsulation of S.epidermidis in PSF MTAM enhanced the glycerol fermentation activities of S. epidermidis. To mimic the granulomatous type of acne inflammatory acne vulgaris, the ears of mice were injected intradermally with C.acnes to induce the secretion of macrophage inflammatory protein-2 (MIP-2), a murine counterpart of human interleukin (IL)-8. The C. acnes-injected mouse ears were covered with a PST MTAM encapsulated with or without S.epidermidis in the presence of glycerol. The application of S.epidermidis-encapsulated PST MTAM plus glycerol onto the C.acnes-injected mouse ears considerably reduced the growth of C. acnes and the production of MIP-2. Furthermore, no S. epidermidis leaked from PSF MTAM into mouse skin. The S. epidermidis-encapsulated PST MTAM functions as a probiotic acne patch.
原文英語
期刊International Journal of Molecular Sciences
20
發行號1
DOIs
出版狀態已發佈 - 1月 2019

指紋

深入研究「A Microtube Array Membrane (MTAM) Encapsulated Live Fermenting Staphylococcus epidermidis as a Skin Probiotic Patch against Cutibacterium acnes」主題。共同形成了獨特的指紋。

引用此