A biomimetic honeycomb-like scaffold prepared by flow-focusing technology for cartilage regeneration

Chen Chie Wang, Kai Chiang Yang, Keng Hui Lin, Chang Chin Wu, Yen Liang Liu, Feng Huei Lin, Ing Ho Chen

研究成果: 雜誌貢獻文章同行評審

27 引文 斯高帕斯(Scopus)

摘要

A tissue engineering chondrocytes/scaffold construct provides a promise to cartilage regeneration. The architecture of a scaffold such as interconnections, porosities, and pore sizes influences the fates of seeding cells including gene expression, survival, migration, proliferation, and differentiation thus may determine the success of this approach. Scaffolds of highly ordered and uniform structures are desirable to control cellular behaviors. In this study, a newly designed microfluidic device based on flow-focusing geometry was developed to fabricate gelatin scaffolds of ordered pores. In comparison with random foam scaffolds made by the conventional freeze-dried method, honeycomb-like scaffolds exhibit higher swelling ratio, porosity, and comparable compressive strength. In addition, chondrocytes grown in the honeycomb-like scaffolds had good cell viability, survival rate, glycosaminoglycans production, and a better proliferation than ones in freeze-dried scaffolds. Real-time PCR analysis showed that the mRNA expressions of aggrecan and collagen type II were up-regulated when chondrocytes cultured in honeycomb-like scaffolds rather than cells cultured as monolayer fashion. Oppositely, chondrocytes expressed collagen type II as monolayer culture when seeded in freeze-dried scaffolds. Histologic examinations revealed that cells produced proteoglycan and distributed uniformly in honeycomb-like scaffolds. Immunostaining showed protein expression of S-100 and collagen type II but negative for collagen type I and X, which represents the chondrocytes maintained normal phenotype. In conclusion, a highly ordered and honeycomb-like scaffold shows superior performance in cartilage tissue engineering. Biotechnol. Bioeng. 2014;111: 2338-2348.

原文英語
頁(從 - 到)2338-2348
頁數11
期刊Biotechnology and Bioengineering
111
發行號11
DOIs
出版狀態已發佈 - 11月 1 2014

ASJC Scopus subject areas

  • 應用微生物與生物技術
  • 生物工程
  • 生物技術

指紋

深入研究「A biomimetic honeycomb-like scaffold prepared by flow-focusing technology for cartilage regeneration」主題。共同形成了獨特的指紋。

引用此