8‐hydroxydaidzein, an isoflavone from fermented soybean, induces autophagy, apoptosis, differentiation, and degradation of oncoprotein bcr‐abl in k562 cells

Pei Shan Wu, Jui Hung Yen, Chih Yang Wang, Pei Yi Chen, Jui Hsiang Hung, Ming Jiuan Wu

研究成果: 雜誌貢獻文章同行評審

17 引文 斯高帕斯(Scopus)

摘要

8‐Hydroxydaidzein (8‐OHD, 7,8,4′‐trihydoxyisoflavone) is a hydroxylated derivative of daidzein isolated from fermented soybean products. The aim of this study is to investigate the antiproliferative effects and the underlying mechanisms of 8‐OHD in K562 human chronic myeloid leukemia (CML) cells. We found that 8‐OHD induced reactive oxygen species (ROS) overproduction and cell cycle arrest at the S phase by upregulating p21Cip1 and downregulating cyclin D2 (CCND2) and cyclin‐dependent kinase 6 (CDK6) expression. 8‐OHD also induced autophagy, caspase‐7‐ dependent apoptosis, and the degradation of BCR‐ABL oncoprotein. 8‐OHD promoted Early Growth Response 1 (EGR1)‐mediated megakaryocytic differentiation as an increased expression of marker genes, CD61 and CD42b, and the formation of multi‐lobulated nuclei in enlarged K562 cells. A microarray‐based transcriptome analysis revealed a total of 3174 differentially expressed genes (DEGs) after 8‐OHD (100 μM) treatment for 48 h. Bioinformatics analysis of DEGs showed that hemopoiesis, cell cycle regulation, nuclear factor‐κB (NF‐κB), and mitogen‐activated protein kinase (MAPK) and Janus kinase/signal transducers and activators of transcription (JAK‐STAT)‐mediated apoptosis/anti‐apoptosis networks were significantly regulated by 8‐OHD. Western blot analysis confirmed that 8‐OHD significantly induced the activation of MAPK and NF‐κB signaling pathways, both of which may be responsible, at least in part, for the stimulation of apoptosis, autophagy, and differentiation in K562 cells. This is the first report on the anti‐CML effects of 8‐ OHD and the combination of experimental and in silico analyses could provide a better understanding for the development of 8‐OHD on CML therapy.
原文英語
文章編號506
頁(從 - 到)1-23
頁數23
期刊Biomedicines
8
發行號11
DOIs
出版狀態已發佈 - 11月 2020

ASJC Scopus subject areas

  • 醫藥(雜項)
  • 一般生物化學,遺傳學和分子生物學

指紋

深入研究「8‐hydroxydaidzein, an isoflavone from fermented soybean, induces autophagy, apoptosis, differentiation, and degradation of oncoprotein bcr‐abl in k562 cells」主題。共同形成了獨特的指紋。

引用此