TY - JOUR
T1 - 17β-estradiol downregulates angiotensin-II-induced endothelin-1 gene expression in rat aortic smooth muscle cells
AU - Hong, Hong Jye
AU - Liu, Ju Chi
AU - Chan, Paul
AU - Juan, Shu Hui
AU - Loh, Shih Hurng
AU - Lin, Jaung Geng
AU - Cheng, Tzu-Hurng
N1 - Funding Information:
This work was supported, in part, by National Science Council Grant (NSC 92-2314-B-038-051; NSC 92-2314-B-038-052), Taiwan, ROC.
PY - 2004
Y1 - 2004
N2 - It is well documented that 17β-estradiol (E2) exerts a cardiovascular protective effect. A possible role of E2 in the regulation of endothelin-1 (ET-1) production has been reported. However, the complex mechanisms by which E2 inhibits ET-1 expression are not completely understood. The aims of this study were to examine whether E 2 may alter angiotensin II (Ang II)-induced cell proliferation and ET-1 gene expression and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with E2, then stimulated with Ang II, and [ 3H]thymidine incorporation and ET-1 gene expression were examined. The effect of E2 on Ang-II-induced extracellular signal-regulated kinase (ERK) phosphorylation was tested to elucidate the intracellular mechanism of E2 in proliferation and ET-1 gene expression. Ang II increased DNA synthesis which was inhibited with E2 (1-100 nM). E2, but not 17α-estradiol, inhibited the Ang-II-induced ET-1 gene expression as revealed by Northern blotting and promoter activity assay. This effect was prevented by coincubation with the estrogen receptor antagonist ICI 182,780 (1 μM). E2 also inhibited Ang-II-increased intracellular reactive oxygen species (ROS) as measured by a redox-sensitive fluorescent dye, 2′,7′-dichlorofluorescin diacetate, and ERK phosphorylation. Furthermore, E2 and antioxidants, such as N-acetyl cysteine and diphenylene iodonium, decreased Ang-II-induced cell proliferation, ET-1 promoter activity, ET-1 mRNA, ERK phosphorylation, and activator protein-1-mediated reporter activity. In summary, our results suggest that E2 inhibits Ang-II-induced cell proliferation and ET-1 gene expression, partially by interfering with the ERK pathway via attenuation of ROS generation. Thus, this study provides important new insight regarding the molecular pathways that may contribute to the proposed beneficial effects of estrogen on the cardiovascular system.
AB - It is well documented that 17β-estradiol (E2) exerts a cardiovascular protective effect. A possible role of E2 in the regulation of endothelin-1 (ET-1) production has been reported. However, the complex mechanisms by which E2 inhibits ET-1 expression are not completely understood. The aims of this study were to examine whether E 2 may alter angiotensin II (Ang II)-induced cell proliferation and ET-1 gene expression and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with E2, then stimulated with Ang II, and [ 3H]thymidine incorporation and ET-1 gene expression were examined. The effect of E2 on Ang-II-induced extracellular signal-regulated kinase (ERK) phosphorylation was tested to elucidate the intracellular mechanism of E2 in proliferation and ET-1 gene expression. Ang II increased DNA synthesis which was inhibited with E2 (1-100 nM). E2, but not 17α-estradiol, inhibited the Ang-II-induced ET-1 gene expression as revealed by Northern blotting and promoter activity assay. This effect was prevented by coincubation with the estrogen receptor antagonist ICI 182,780 (1 μM). E2 also inhibited Ang-II-increased intracellular reactive oxygen species (ROS) as measured by a redox-sensitive fluorescent dye, 2′,7′-dichlorofluorescin diacetate, and ERK phosphorylation. Furthermore, E2 and antioxidants, such as N-acetyl cysteine and diphenylene iodonium, decreased Ang-II-induced cell proliferation, ET-1 promoter activity, ET-1 mRNA, ERK phosphorylation, and activator protein-1-mediated reporter activity. In summary, our results suggest that E2 inhibits Ang-II-induced cell proliferation and ET-1 gene expression, partially by interfering with the ERK pathway via attenuation of ROS generation. Thus, this study provides important new insight regarding the molecular pathways that may contribute to the proposed beneficial effects of estrogen on the cardiovascular system.
KW - 17β-Estradiol
KW - Angiotensin II
KW - Endothelin-1
KW - Extracellular signal-regulated kinase
KW - Reactive oxygen species
KW - Smooth muscle cells
UR - http://www.scopus.com/inward/record.url?scp=0942278967&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0942278967&partnerID=8YFLogxK
U2 - 10.1159/000075286
DO - 10.1159/000075286
M3 - Article
C2 - 14730207
AN - SCOPUS:0942278967
SN - 1021-7770
VL - 11
SP - 27
EP - 36
JO - Journal of Biomedical Science
JF - Journal of Biomedical Science
IS - 1
ER -